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| Why logarithmic 2-loop calculations in EW theory?

Electroweak (EW) precision physics

e experimentally measured by now at energy scales up to ~ My z
e future generation of accelerators (LHC, ILC) — TeV region
e new energy domain /s > Myy » becomes accessible

Electroweak radiative corrections Fadin et al. '00: Kiihn et al. '00, '01;
. . Denner et al. '01, '03, '04; Pozzorini '04;
at high energies /s ~ TeV > My B.F. et al. '03, '04; ...

‘ large negative corrections in exclusive cross sections I

e EW corrections dominated by Sudakov logarithms o” lnj(s/M%CZ), j = 2n,
large coefficients in front of subleading logarithms (0 < j < 2n)

e 1-loop corrections = 10%

e 2-loop corrections 2 1%, need to be under control for LHC/ILC

e single logarithmic contributions even larger, but strong cancellations
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Important class of processes: 4-fermion scattering
/ /
f / e ING 2!
A= —F"A
_ S _ _

/' f /'

f

Form factor F' of vector current:

D2
q = I u(p2) v ulpy) + F' - a(p2) o u(p1) g
P1 vanishes when‘;ermion masses are neglected
High energy behaviour [s| ~ [t| ~ |u| > My, , see Kiihn et al. '01 for references

e all collinear logarithms of the amplitude A are part of the form factors F'°
e the reduced amplitude A contains only soft logarithms
e A satisfies an evolution equation known from massless calculations:
0A - _ o
s x(a(s)) A, x = matrix of soft anomalous dimensions
ns

= still needed for 2-loop logarithms in A: form factor I
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High energy behaviour of the form factor

< Sudakov limit:

P2

q = F(Q?) - u(p2) v u(p1)
P1

e momentum transfer —¢* = Q% > M? = M3, ,

[Euclidean Q% >0 Minkowskian (—s) < o]

analytic

continuation

e neglect fermion masses — external on-shell fermions: p? = p# = 0

e logarithmic approximation: neglect terms suppressed by a factor of M?/Q?

— works well for 2-loop ns contribution where the exact result in M?/Q? is known
B.F., Kuhn, Moch '03

= contains constants and powers of the large logarithm In(Q?/M?)
= leading order of asymptotic expansion in M?/Q?

Form factor and 4-fermion cross section have previously been known

in NNLL accuracy at 2 loops: o2 1n?(Q?/M?), j = 4,3,2
Kihn, Moch, Penin, Smirnov '01
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Simplified models

1. decompose the problem into simpler parts:

Standard Model
SU(2)L ® U(1)
My # Mz, M, =0

U(1), ® U(1), model

2 Abelian interactions

mass gap M > A — 0

!

SU(2) ® U(1), model
MW ~ MZ >\ — 0

massive U(1) model
Abelian (~ QED)

gauge boson mass M

!

massive SU(2) model

gauge boson mass M

2. use the partial results to compose a precise approximation of the Standard Model result
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Il Massive U(1) form factor

Form factor in perturbation theory: ' =1+ o F, +a’ Fy + ...

large radiative corrections for () ~ TeV — sum up large logarithms to all orders in a:

F =1+ oa(n®+In+const) + o (In* 4+ In® + In® + In 4 const) + . ...
< (14 - const +a” - const +...) exp(oz(ln2—|—ln)—|—042 (In® 4 In® + In) —|—)

Evolution equation in logarithmic approximation: Sen '81; Collins '89; Korchemsky '89; . . .
or(Q?) Q" dx
2 /M2 — (@) +¢(a(Q%)) + £(a(M?)) | F(Q)

solution — exponentiation:

F(Q?) = Fo(a(M?)) eXp{/Q2d—x [

M2 X M2 L

/x d_f’ilv(a(x’)) 4+ g(a(x)) — f(Oé(MQ))] }
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Exponentiated form factor from the evolution equation:

/x d—aily(oz(a:’)) + (o)) + €<O‘(M2))] }

MQZU

F(Q%) = Fo(Oé(MQ))eXp{/QQdQj [

M2CC

perturbative expansion of the functions v, (, £ and Fj:
_ 2
v(a)=avy +a” v +... etc

running of the coupling constant:

w)ﬁo

M?)? + ...
M? 47Ta( )+

a(r) = a(M?) — ln(

= perform the integrals over x and 2’ in the exponent
— expansion of the exponent in o and powers of In(Q?/M?)

e compare the expansion of the exponentiated form factor
to the perturbative result of a fixed order in o
e determine the corresponding coefficients of v, ¢, £ and Fj
e obtain a /eading logarithmic approximation to all orders in «
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Coefficients of v, ¢, £ and F|y previously known for massive SU(N) and U(1) models:
e 1-loop result — v, ¢, & and Fj up to O(a)

e massless 2-loop result — ~ up to O(a?) Kodaira, Trentadue '81
o o 67 20
=-20p— <1+ — || =———=|Ca—— O(a?
@) Fzm{ +47TK9 3) 4T an”+ ()

(o) = 3CF% +O(a?)
(a) =0+ 0(a?)

72
FQ(Oé) = —CF (5 + §7T2) % + O(oz2)

e 1-loop running of o «+» 1-loop F-function:
11 4

— —Cy — -
Bo 3 A San

= NNLL approximation of 2-loop form factor Fy known: o (In* 4 In® + In?)
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Massive U(1) form factor in 2-loop approximation

known from evolution equation & full calculation of n ¢ contribution: (ns = # fermions)
20 _ [ Q)2 Q2 4 5 Q°
38 2 2
+ (—nf + 37T —|—8) In? (%)

9
34 N (@)L (16, 15

— n| —= — —_—
3 Vg o7 T g )Y

Kuhn, Moch, Penin, Smirnov '01
B.F., Kuhn, Moch '03

e growing coefficients with alternating sign:

—0.4n;n° +4.2n;1n” —11.37n;In + 18.6 1,
+05In*— 3 In®+ 146 In*— ... In+

e Q~1TeV — +In* ~ —In® ~ +In?
— strong cancellations between logarithmic terms

complete 2-loop corrections in logarithmic approximation necessaryl
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Massive U(1) form factor in 2-loop approximation: n s part

successive logarithmic approximations:
B.F., Kiihn, Moch, Phys. Lett. B 561 (2003) 111

o2 0.005 —mMm8™@™m—m———————————————————
o Fy =mny (—) [ ' '
4 _
4 ) 2 2 -
— ~In* Q— 38220 oo —
9 M?2 0 M2 _
, . ) ] S
115 : M = 80 GeV, a/(4m) = 0.003, n; = 6 |
——ln(Q2)—|— 2—|——] - L
_|_ non_nf part NNLL (In2 included)
- —— N°LL (Int included)
i complete
oo L—
500 1000 1500 2000 2500 3000

Q [GeV]

e strong cancellations between logarithmic terms in ny part
e good 2-loop approximation only with all logarithmic terms (and constant)
e behaviour of non-n; part similar — need complete logarithmic approximation



Bernd Feucht, Electroweak 2-loop corrections at high energies 12/29

Massive U(1) form factor in 2-loop approximation: diagrams (n; = 0)
e complete 2-loop result — loop calculation (independent of evolution equation)

e 2-loop vertex diagrams (massless fermions, massive bosons, 1 external scale):

A

+ external leg corrections + 1-loop x 1-loop
e reduction to scalar diagrams — FORM (vermaseren)
e scalar diagrams: expansion by regions
e evaluation of integrals and expansion in e = (4 — d)/2 — Mathematica

e independent checks of all contributions
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Massive U(1) form factor in 2-loop approximation: result (ny = 0)
B.F., Kiihn, Penin, Smirnov, Phys. Rev. Lett. 93 (2004) 101802

S T
h= ()] .
i
0.010 F —— NNLL (In? included)
+ ln Q2 agreement v —— NoLL (In1 included)
2 M?2 _ complete
3( Q° 0.005 |
31 = .
n (]\[2 j
2 2 2 Q2 '
+ | =" +8 ) In"( =5 :
748 (e)
) . M = 80 GeV, a/(4m) = 0.003, n; =0 |
( 24(3 + 4m? +9) In ¢ 50 1000 1500 2000 2500 3000
M2 Q [GeV]

1\ 32 39 52 52 . 25
2056 Lis( =) + 22 %2 — 222 22 — 2204 1 80¢s + 2
u 14(2)+3 " g 02— oA £ 80G & o+ = ew]

size of coefficients: +0.5In* —31n° + 14.61n° — 19.61n - 26.4
at Q = 1 TeV: 1326 — 387 -+ 372 ~99.2 +264

= alternating signs!  small constant (N*LL) contribution
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Remark: rescaling the argument of the logarithms, M — e3/* M

111( QZ) S 111( 322 2) + § R NNLL (In? included)
M (e3/4M) 20010 — \3 (Int included)
' complete

— In® contribution vanishes!

0.005 r

0.000
s M =80 GeV, a/(4m) = 0.003, n; =0 |
500 1000 1500 2000 2500 3000
Q [GeV]

size of coefficients after rescaling:  +0.5In" +01n” + 7.81n° + 10.6In + 22.2
at Q = 1TeV: +795 +0 +988 +37.7 4222
= only positive signs!

Physical meaning?
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Il Methods for loop calculations at high energies

Reduction to scalar diagrams

given from Feynman rules: F* = u(ps) I'*(p1, p2) u(p1)
wanted: form factor F'(Q?) with F* = F(Q?) - u(p2) v* u(p1)

can be done using the properties of Dirac matrices and spinors,

Iy Y} = 29", gru(pr) = 0, u(p2) Po = 0, combined with tensor reduction

more elegantly with a projector on the form factor:

Tr [y, g2 TH(p1, p2) P1]
2(d — 2) ¢?

F(Q%) =

output: form factor I'((Q?) in terms of scalar Feynman integrals

E E/ I/J
/ddkl /dde 12 )2
z 1 k — M; )"

with L propagators and NV irreducible scalar products in the numerator
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Elimination of irreducible scalar products in the numerator
e Most scalar diagrams could directly be calculated with numerator.

e Diagrams with self-energy insertion:
tensor reduction for inner loop, e.g.

g 2F A M a4k
/ (%, q) p/ feq) @ f (%, q)

e Difficult diagrams where the absence of the numerator was desirable:

* write propagators with Schwinger parameters (alpha parameters):

1 1

_ do a1 ia(k*—M?)
(k? = M2)n M(n)fo e

* diagonalize the argument of the exponential in the loop momenta

* perform tensor reduction: numerator — factors of gH”

* rewrite as linear combinations of the original integral without numerator,
but with higher powers of propagators (n - n+1, n+2, ...)
and higher dimension (d — d+ 2, d+4, ...)

Anastasiou et al. '00



Bernd Feucht, Electroweak 2-loop corrections at high energies 17/29

Expansion by regions
a powerful method for the asymptotic expansion of Feynman diagrams Beneke, Smirnov '98

e given: scalar Feynman integral & limit like Q% > NM? (Minkowskian limit!)
e wanted: expansion of the integral in M?/(Q?
e problem: direct expansion of the integrand leads to (new) IR/UV singularities

Recipe for the method of expansion by regions:

1. divide the integration domain into regions for the loop momenta
(especially such regions where singularities are produced in the limit M — 0)

2. in every region, expand the integrand in a Taylor series with respect to the parameters
that are considered small there

3. integrate the expanded integrands over the whole integration domain

4. put to zero any scaleless integral (due to the properties of dimensional regularization)

e usually only a few regions give non-vanishing contributions
e for logarithmic approximation: only leading order of the expansion needed
— In step 2. all small parameters in the integrand are simply set to zero
e sometimes additional regularization (apart from ¢) needed for individual regions
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Expansion by regions: example
Vertex form factor in the Sudakov limit ()% > M/? P2

e typical regions for each loop momentum k: q

P1

hard  (h all components of k ~ ()

soft  (s): all components of k ~ M
k? ~2p1 -k~ M?  2py-k~ Q>
k? ~2py -k~ M?* 2p; -k~ Q?

)
)
ultrasoft  (us):  all components of k ~ M?/Q
1-collinear  (1c):
)

2-collinear  (2c):

1
imd/2 (k2 — M?2)(k? — 2p1 - k)(k? — 2p2 - k)

= e - i B o)
1 1 1 1 5

o 5 2 2 2 2 M2
Fue @[_‘gln@)—gln (M) +In(M7) In(Q°) — 57° +O<Q2>}

L) o) e L[ 1 o(Q7N M=
1=t = g | () - o)

e 1-loop vertex correction: f = /
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Expansion by regions: why it works

dk k—°¢
(k +m)(k + q)

simple d = 1 example: f = / , m<q
0

soft (s): k<A

where m < A < ¢
hard (h): k> A

f

/A dk k—¢ Y dk k—¢
o (E+m)(k+q) A (BE+m)(k+q)

& (-1 /Adk:k: et & / o dk ket
=2 ¢t Jo Z( ™)’ k+q

oo 1)3 /oo dk k— e+J /oo dk k— e+Jg +§:( )Z /oo dk k—s—i—l /A dk k—a—z‘—l
pu— —m R
Oq‘7+1 E+m P 0 k+q 0 k+q

<
@)

:i - /OOdkk ety i( m’ / dk k=1 _i’j_ )i Z(q_g—i—)lj /Ooodkk—s—i—l—j—l

=0 Ng P

Ve

— 0, scaleless integral

() £

=+ v
_I(eF(1—¢) T(9)T(1—e) _ In(g/m)
(g —m)me (g —m)q° q—m

+0(e) VvV
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Parameterization of Feynman integrals

e Feynman parameters:

nz—l 6 ;i — 1)
HA"’L H F (n;) (H/ iz > (o, widy)2=im

e Schwinger parameters — more general esp. with expansion by regions:

1 ! h ' 10 .
An z‘nF(n)/O doa™ 1 e numerator A" = (z 8(1) siaA

= any number of propagators and numerators may be combined

a=0

= can always be transformed to Feynman parameters

< evaluation:
/ddk ei(ak2—|—2p.k) _ 7:7_‘_d/2 (iOé)_d/2 e—z’p2/a
/Ooda an—l eiozA _ an(n)
0 A

/OO daa™ ! _ ['(n)T(r —n)
o (A+aB)" TI'(r)Ar—n Bn
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Mellin-Barnes representation

Feynman integrals with many scales / many massive propagators are hard to evaluate
— separate scales by Mellin-Barnes representation:

1 1 P B*
= —“T(=2)T
(A+B)» TI'(n) /_ioo 2mi (=2) T+ 2) Antz

e Mellin-Barnes integrals go along the imaginary axis, leaving poles of I'(—z + .. .)
to the right and poles of I'(z 4 ...) to the left of the integration contour

e applicable to massive propagators (A = k?, B = —M?)
or to any complicated intermediate expression

e evaluation:
close the integration contour to the right (|B| < |A|) or to the left (|B| > |A])
and pick up the residues within the contour using Res P(Z)’z:—i = (—=1)*/4!
= sums over I'-functions
= multiple (-values / generalized (harmonic) polylogarithms etc.

e close link to expansion by regions:
Mellin-Barnes representation of the full integral
— contributions corresponding to the regions
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‘ IV U(1)xU(1) model with mass gap |

EW theory: massive and massless gauge bosons
— consider U(1)y;xU(1), model with 2 different masses M > A\ — 0

e pure U(1)y: form factor F'(a, Q, M)

e pure U(1),: form factor F'(a/, Q, )
— known from massive U(1) result (M — A\, a — ')
— IR (soft/collinear) singularities regularized by A\ (or by poles in ¢ if A = 0)

A

e combined U(1)y, xU(1)x: Fla,a’,Q, M, \)
QQ > M > )\ — factorization of IR singularities:

. ~ )2
F(a,o',Q,M,\) = F(&’,Q,AZF(@,&’,Q,MZ—F O(aa’ﬁ>

~

IR singular IR finite
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Factorization of U(1)xU(1) form factor: results (ny = 0)

~ 2
F(a7&/7QaM7 >\> — F<O/7Q7)‘> F(Oé,Oé/,Q,M) —|—O<OéOé %)

F(&,(X,,Q,Ma )\) . Fg(()g,()g/’Q7M7 O)
F M) = li B
> Floa, QM) = = N~ M F(@,Q.0)

< set A = 0 and calculate F. (o, @, @, M,0) in dimensional regularization

calculation of 2-loop diagrams with
1 massive and 1 massless gauge boson: ‘%
F(o,a,Q,M) = F(a,Q, M) x

oo Q? 20
{1+(47T) [(48C3—47T +3)IH(M2)+E7T — 84(3 + — 57 s %]}

21.2 —22.0

= interference terms are finite ~~ IR singularities factorize
— additional terms contain only single logarithm In*
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Factorization of U(1)xU(1) form factor for A = M

A i A2
Flaal, QM) = F(o. Q) Fa,a, QM) + 0 ad' 375

. 2
form of the suppressed interference terms O(aa’%)?

— set A = M and parameterize:
Flo,o,Q,M,M)=F(a',Q,M)F(a,d,Q,M)Cla,a’,Q, M)

on the other hand: F(a,a/,Q, M. M) = F(a+a',Q, M)

— known from massive U(1) result — calculate matching coefficient:

oo
(47)?

. 64 64 113 70 59
512Lis (%) + = In*2 — ?7'('2 In?2 — ﬁw‘* + 244(3 + 3# + 7

\ . 7
-~

—26.8

C(a,o/,Q,M) =1+

= interference term is constant, no logarithm
= product F'(¢/,Q,\) F(a,a’,Q, M) approaches F(e, o, Q, M, M) continuously
for A — M with N°LL accuracy!
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‘ V Applications |

U(1)xU(1) form factor with mass gap from 1-mass result

massive W, Z & massless photon — need form factor with mass gap

A

suppose we cannot calculate F'(a, o/, Q, M, \ — 0),
but we know F'(a,@Q, M) and F(a/,Q, \ — 0)

— use Fa+d,Q, M) :F(a’,Q,M)ﬁ(a,a’,Q,M)—|—(9(ozo/ lno)

so we can get all logarithms in 2 loops:

Fla+d,Q,M)
F(o,Q,M)

Fla,o,Q, M, X —0)=F(a/,Q,\ — 0) + O(ad! lno)

= the calculation is reduced to the 1-mass case (with photon as heavy as W, 7)

Note:
SU(2)xU(1) model with mass gap — result only up to O(aa’ In')



Bernd Feucht, Electroweak 2-loop corrections at high energies 26/29

Expanding the U(1)xU(1) form factor in a small mass difference

up to now, all heavy gauge bosons — same mass M,
but we need also My ~ My; — A\~ M:

M — A\
M

— expand first term in 0 = for \ = M:

Fla,o,Q, M, )\)‘ = Fla+a',Q,M) - {1 —5— [41n(52) —6] +(’)(62)}

+ (9(5 aa’ lno’l)

A M

contribution of the mass difference to the form factor at order a? (for o/ = «):

2 K Q? Q? Q>
oz =0 <4W> [—21113<M ) +91n 2(@) (16+ 7 )ln(M2) +]

—29.2

AF
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Contribution of the M, # My mass difference to the 2-loop form factor

V% ————————————————————
My, = 80.4 GeV 20% |

10% 1
Mz =91.2 GeV 0% | |
10 % L -
~20% | '
30 % |
~40 % |
of the mass difference Mz # My, _ggq |

Relative contribution (in %)

- contribution from M, > M,y — 7
to the 2-loop form factor F5 -60 % | DUt z> Mw :

1 o
-70 % |nO Contr’but?on ]
80 % - In~ contribution ]
_ o L , In® contribution

500 1000

1500 2000 2500 3000
Q [GeV]

For comparison:
in blue/green: relative contribution of the linear logarithm / constant terms in Fy

= The My # My, mass difference can be taken into account

by an expansion around the equal mass approximation.
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‘ VI Summary & outlook I

Massive U(1) form factor

e simple model with massive gauge bosons
e complete 2-loop result in logarithmic approximation v/

= precise control of radiative corrections

U(1)xU(1) model with mass gap
e step towards EW theory with massive & massless gauge bosons
e factorization of IR singularities shown explicitly v

Applications
e calculation with mass gap reduced to the 1-mass case My = Mz = Mphoton
e N, +#+ My, taken into account by expanding around the equal mass approximation

Various methods for loop calculations at high energies, e.g.
e expansion by regions — asymptotic expansion for Sudakov limits

e Mellin-Barnes representation, . ..
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Outlook
e extend to non-Abelian models: SU(2), SU(N), SU(2)xU(1): work in progress

\ 7

WV 3 « ~— .,
v (N"LL) to be done

e consider Higgs contributions

e 4-fermion scattering amplitude

e predictions for EW corrections to ff — f’f’ cross sections



