

Journal Club Institut für Theoretische Physik E, RWTH Aachen University January 23, 2009

Quantum-mechanical tunneling time of an electron wave packet

Bernd Jantzen

RWTH Aachen University

- I Tunneling delay time measurements in Helium
 - P. Eckle et al., Science 322 (2008) 1525
- II Free wave packet
- III Stationary solution for rectangular tunnel barrier
- IV Numerical solution for time-dependent tunneling in three cases:
 - A: "Slow" wave packet, thin barrier \rightarrow "tunneling of the low momenta"
 - B: "Slow" wave packet, thick barrier $\rightarrow\,$ "transmission of the high momenta"
 - C: "Fast" wave packet, thick barrier \rightarrow time-resolved transmission

Tunneling delay time measurements in Helium

P. Eckle¹, A.N. Pfeiffer¹, C. Cirelli¹, A. Staudte², R. Dörner³, H.G. Muller⁴,
M. Büttiker⁵, U. Keller¹, Attosecond Ionization and Tunneling Delay Time Measurements in Helium, Science 322 (2008) 1525

¹ETH Zürich, ²Ottawa, ³Frankfurt, ⁴Amsterdam, ⁵Geneva

Aim: Measure the tunneling time of a bound electron through the Coulomb potential of a helium atom during ionization.

Measurement:

- Intense laser pulse hits helium atoms \rightarrow lowers Coulomb potential \rightarrow enables tunneling of bound electron to the outside \rightarrow ionization
- At the exit of the tunnel the electron is accelerated by electric laser field \rightarrow laser polarization determines direction of electron drift momentum
- Use circularly/elliptically polarized laser pulse \rightarrow electron drift direction corresponds to laser field polarization at the time of tunnel exit
 - \rightarrow time measurement with attosecond accuracy ("angular streaking")
- Measure drift of helium instead of electrons → correspondence by simple semiclassical simulation assuming instantaneous tunneling (with Coulomb correction)

Calibration of absolute time zero:

- ellipticity of laser polarization induces oscillations in the angular ion momentum distributions
- calibration by linear polarized laser pulse

Result: upper limit of 34 as for tunneling time (intensity-averaged upper limit: 12 as)

Comparison to theoretical predictions:

- Instantaneous tunneling agrees with numerical simulations
- Wigner-Eisenbud-Smith delay time: follow peak of a wave packet; delay time can be much shorter than time for light propagation ("superluminal")
- Buttiker-Landauer traversal time: modulating tunnel barrier height in time; predicts 450–560 as for present conditions

II Free wave packet

Schrödinger equation in 1 dimension
$$(\hbar = 1)$$
: $i\partial_t \psi(t, x) = \left(-\frac{\partial_x^2}{2m} + V(x)\right)\psi(t, x)$

Free electron wave (without barrier potential, $V \equiv 0$):

single-momentum contribution (Fourier component): $\tilde{\psi}_{\text{free}}(k;t,x) = \exp\left(ikx - i\frac{k^2}{2m}t\right)$

Gaussian wave packet: amplitude
$$A(k) = \frac{1}{\sqrt[4]{2\pi}} \frac{1}{\sqrt{\sigma_k}} \exp\left(-\frac{(k-k_0)^2}{4\sigma_k^2} - ikx_0\right)$$

 \hookrightarrow normalized momentum distribution $|A(k)|^2 = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma_k} \exp\left(-\frac{(k-k_0)^2}{2\sigma_k^2}\right)$
with $\langle k \rangle = \int_{-\infty}^{\infty} \mathrm{d}k \, k \, |A(k)|^2 = k_0$ and $\sigma_k = \sqrt{\langle k^2 \rangle - \langle k \rangle^2}$

Time-dependent free wave packet: integration of ψ_{free} over k with amplitudes A

$$\psi_{\text{free}}(t,x) = \int_{-\infty}^{\infty} \frac{\mathrm{d}k}{\sqrt{2\pi}} A(k) \,\tilde{\psi}_{\text{free}}(k;t,x)$$

 \hookrightarrow Fourier transformation with factor e^{ikx} included in $\tilde{\psi}_{\text{free}}(k;t,x)$

Time-dependent free wave packet: analytical solution

$$\psi_{\text{free}}(t,x) = \frac{1}{\sqrt[4]{2\pi}} \sqrt{\frac{2\sigma_k}{1+i\frac{2\sigma_k^2}{m}t}} \exp\left(\frac{-\sigma_k^2(x-x_0)^2 + ik_0(x-x_0) - i\frac{k_0^2}{2m}t}{1+i\frac{2\sigma_k^2}{m}t}\right)$$

 $\hookrightarrow \text{ normalized probability distribution}$

$$|\psi_{\text{free}}(t,x)|^2 = \frac{1}{\sqrt{2\pi}} \frac{2\sigma_k}{\sqrt{1 + \frac{4\sigma_k^4}{m^2}t^2}} \exp\left(-\frac{1}{2} \frac{(2\sigma_k)^2}{1 + \frac{4\sigma_k^4}{m^2}t^2} \left[x - \left(x_0 + \frac{k_0}{m}t\right)\right]^2\right)$$

with
$$\langle x \rangle = \int_{-\infty}^{\infty} \mathrm{d}x \, x \, |\psi_{\mathsf{free}}(t,x)|^2 = x_0 + \frac{k_0}{m} t \text{ and } \sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \frac{\sqrt{1 + \frac{4\sigma_k^4}{m^2} t^2}}{2\sigma_k}$$

Free wave packet with parameters $k_0 = \pi$, $\sigma_k = 1/\sqrt{2} \approx 0.7$, $x_0 = 0$, 2m = 1, plot $|\psi_{\text{free}}(t, x)|$, $\operatorname{Re} \psi_{\text{free}}(t, x)$ and $\operatorname{Im} \psi_{\text{free}}(t, x)$:

Velocity of the packet maximum: $v = \frac{k_0}{m} = 2k_0 = 2\pi$, but the front of the wave packet is faster!

Numerical integration of Fourier components $A(k) \tilde{\psi}_{\text{free}}(k; t, x) \Rightarrow$ same result.

III Stationary solution for rectangular tunnel barrier

Rectangular tunnel barrier with height V and length L: $V(x) = V \theta(x)\theta(L - x)$ **Stationary solution** for incoming momentum k:

$$\tilde{\psi}(k;t,x) = \exp\left(-i\frac{k^2}{2m}t\right) \begin{cases} e^{ikx} + \frac{(k^2 + \kappa^2)\sinh(\kappa L)}{\Delta(k,\kappa)} e^{-ikx}, & x \le 0, \\ \frac{k(k+i\kappa)}{\Delta(k,\kappa)} e^{-\kappa(x-L)} - \frac{k(k-i\kappa)}{\Delta(k,\kappa)} e^{\kappa(x-L)}, & 0 \le x \le L, \\ \frac{2ik\kappa}{\Delta(k,\kappa)} e^{ik(x-L)}, & L \le x \end{cases}$$

with
$$\Delta(k,\kappa) = (k^2 - \kappa^2) \sinh(\kappa L) + 2ik\kappa \cosh(\kappa L)$$

and $\kappa = \sqrt{2mV - k^2}$
(or $\kappa = -i\sqrt{k^2 - 2mV}$ for $k^2 > 2mV$)

Example for $k^2 < 2mV$: plot barrier (height in arbitrary units), $|\tilde{\psi}(k;t,x)|$, $\operatorname{Re} \tilde{\psi}(k;t,x)$ and $\operatorname{Im} \tilde{\psi}(k;t,x)$

Stationary solution for L = 3 and $\sqrt{2mV} = 3.25$:

IV Numerical solution for time-dependent tunneling

Multiply stationary solution $\tilde{\psi}(k;t,x)$ with Gaussian wave packet A(k) and integrate numerically over k:

$$\psi(t,x) = \int_{-\infty}^{\infty} \frac{\mathrm{d}k}{\sqrt{2\pi}} A(k) \,\tilde{\psi}(k;t,x)$$

Numerical integration performed by MATHEMATICA with a working precision of 20–35 digits, depending on the parameters.

Three cases:

- A: "slow" wave packet $(k_0 = \pi \gtrsim \sigma_k)$, thin barrier $(L = 1 = \pi/k_0 \sim \sigma_x)$
- B: "slow" wave packet $(k_0 = \pi \gtrsim \sigma_k)$, thick barrier $(L = 5 > \{\sigma_x, \pi/k_0\})$
- C: "fast" wave packet $(k_0 = 20 \gg \sigma_k)$, thick barrier $(L = 5 > \sigma_x \gg \pi/k_0)$

A: "Slow" wave packet, thin barrier — Which momenta contribute to the transmission?

Momentum distribution of incoming wave packet, i.e. part of $\tilde{\psi}(k;t,x)\propto e^{ikx}$ at x<0:~|A(k)|

Momentum distribution of transmitted wave packet, i.e. $\tilde{\psi}(k; t, x)$ at x > L: $|A(k) \tilde{\psi}(k; t, L)|$ (logarithmic scale)

⇒ transmission dominated by central momenta $k \approx k_0 < \sqrt{V}$ ⇒ "real" tunneling

A: "Slow" wave packet, thin barrier — Conclusion

- Thin barrier: only modest exponential damping through the tunneling (~ 10⁻⁴)
 → transmission dominated by tunneling of low-momentum components.
- Incoming and reflected wave packet: wave length $(2\pi/k)$ and velocity of maximum (2k) correspond to $k_0 = \pi$ and to a reflection at x = 0.
- In the tunnel: exponential decrease, no structure
- Transmitted wave packet: wave length $\rightsquigarrow k \approx 4$, velocity of maximum $\rightsquigarrow 3.5 \lesssim k \lesssim 4 \Rightarrow k \gtrsim k_0$, $k^2 \ll V$
- Packet maximum enters tunnel at t = 0.8 and exits at t = 0.7 $\Rightarrow \Delta t_{\text{tunnel}} \approx -0.1 \lesssim 0$
- Reflected and transmitted wave packets are approximately Gaussian.
 Only while overlapping with the barrier, the incoming/reflected wave packet develops fringes ("standing wave").

1.0

0.8

10

B: "Slow" wave packet, thick barrier — Which momenta contribute to the transmission?

Momentum distribution of incoming wave packet, i.e. part of $\tilde{\psi}(k;t,x)\propto e^{ikx}$ at x<0:~|A(k)|

0.6 0.4 0.2 10 5 0 10^{-5} 10^{-10} 10^{-20} 10^{-25}

5

0

Momentum distribution of transmitted wave packet, i.e. $\tilde{\psi}(k; t, x)$ at x > L: $|A(k) \tilde{\psi}(k; t, L)|$ (logarithmic scale)

⇒ transmission dominated by high momenta $k \gtrsim \sqrt{V}$ ⇒ classically allowed transmission

B: "Slow" wave packet, thick barrier — omitting high momenta

B: "Slow" wave packet, thick barrier — omitting high momenta (2)

B: "Slow" wave packet, thick barrier — Conclusion

- Thick barrier: strong exponential damping through the tunneling (~ 10⁻²⁰ at k₀)
 → dominated by classically allowed transmission of high momenta (~ 10⁻¹¹).
- Incoming and reflected wave packet: like in case A wave length and velocity of maximum correspond to $k_0 = \pi$ and to a reflection at x = 0.
- In the tunnel: structure appears (ankle, local maximum)
- Transmitted wave packet: wave length and velocity of maximum $\rightsquigarrow k\approx 10=\sqrt{V}\gg k_0$
- Omitting high momenta $k > \sqrt{V}$ in integration: no transmission from low momenta
- Packet maximum enters tunnel at t = 0.8 and exits at t = 1.6

 $\Rightarrow \Delta t_{\text{tunnel}} \approx 0.8 > 0 \ (v_{\text{tunnel}} = L/\Delta t_{\text{tunnel}} \approx 2\pi \rightsquigarrow k_{\text{tunnel}} \approx k_0)$

• Transmitted wave packet develops tail of lower maxima.

C: "Fast" wave packet, thick barrier — Which momenta contribute to the transmission?

Momentum distribution of incoming wave packet, i.e. part of $\tilde{\psi}(k;t,x)\propto e^{ikx}$ at x<0:~|A(k)|

Momentum distribution of transmitted wave packet, i.e. $\tilde{\psi}(k; t, x)$ at x > L: $|A(k) \tilde{\psi}(k; t, L)|$ (logarithmic scale)

⇒ like in case B: transmission dominated by high momenta $k \gtrsim \sqrt{V}$ ⇒ classically allowed transmission

t = 1.5

C: "Fast" wave packet, thick barrier — Conclusion

- "Fast" wave packet: σ_k/k_0 smaller, (almost) no low momenta \hookrightarrow wave packet stays more compact \Rightarrow better time resolution
- Thick barrier: like in case B − strong exponential damping (~ 10⁻³⁰ at k₀)
 → dominated by classically allowed transmission of high momenta (~ 10⁻⁷).
- Incoming and reflected wave packet: like in cases A&B wave length and velocity of maximum correspond to $k_0 = 20$ and to a reflection at x = 0.
- In the tunnel: a wave packet with moving maximum and large wave length appears, extends, is reflected from end of tunnel, develops fringes, becomes a standing wave
- Transmitted wave packet: wave length and velocity of maximum $\rightsquigarrow k \approx 25 = \sqrt{V} > k_0$
- Packet maximum enters tunnel at t = 0.25 and exits at t = 0.95 $\Rightarrow \Delta t_{\text{tunnel}} \approx 0.7 > 0 \ (v_{\text{tunnel}} = L/\Delta t_{\text{tunnel}} \approx 7.1 \rightsquigarrow k_{\text{tunnel}} \approx 3.6 \ll k_0)$
- Like in case B: transmitted wave packet develops tail of lower maxima.