

SFB/TR9 "Computational Particle Physics" Aachen, 18–20 March 2013

Cancellation of finite-width divergences in threshold top-pair production at linear colliders

Bernd Jantzen

RWTH Aachen University

In collaboration with Martin Beneke and Pedro Ruiz-Femenía

Based on Nucl. Phys. B 840 (2010) 186 [arXiv:1004.2188] and work to be published

- I Top-pair production at linear colliders near threshold
- II Electroweak non-resonant NLO contributions
- III NNLO contributions
 - Finite-width divergences in resonant contributions
 - Cancellation with endpoint-singular non-resonant contributions
- IV Summary & outlook

Top-pair production at linear colliders near threshold

Future linear colliders (ILC/CLIC) with $\sqrt{s} \gtrsim 2m_t \approx 350 \text{ GeV} \rightsquigarrow \text{ produce many } t\bar{t} \text{ pairs:}$ clean initial state of $e^+e^- \rightarrow t\bar{t}$ allows threshold scans with $\sqrt{s} \sim 2m_t$

 \hookrightarrow precise determination of top-quark parameters (m_t, Γ_t, \ldots) , especially as input for electroweak precision observables

Need also precise theoretical prediction!

QCD corrections are known (almost) up to NNNLO/NNLL order, but need electroweak (EW) non-resonant contributions at NLO and NNLO!

The decay $t\bar{t} \rightarrow (bW^+)(\bar{b}W^-)$ is an EW effect.

⇒ Describe $t\bar{t}$ production in terms of the more physical process $e^+e^- \rightarrow W^+W^-b\bar{b}$. ⇒ Allow for invariant-mass cuts on reconstructed t, \bar{t} .

Perturbative expansion: NRQCD

Decay $t \to bW^+$ with $\Gamma_t \approx 1.5 \text{ GeV} \gg \Lambda_{\text{QCD}}$ $\hookrightarrow t\bar{t}$ is perturbative at threshold.

Bigi, Dokshitzer, Khoze, Kühn, Zerwas '86

Top quarks move slowly near threshold: velocity $v \sim \alpha_s \ll 1$ $\hookrightarrow \operatorname{sum} \left(\frac{\alpha_s}{v}\right)^n$ from "Coulomb gluons" to all orders

 \hookrightarrow expansion: LO, NLO, . . . from additional powers of α_s or v:

$$R = \frac{\sigma_{t\bar{t}}}{\sigma_{\mu^+\mu^-}} = v \sum_{n} \left(\frac{\alpha_s}{v}\right)^n \left(\{1\}_{\mathsf{LO}} + \{\alpha_s, v\}_{\mathsf{NLO}} + \{\alpha_s^2, \alpha_s v, v^2\}_{\mathsf{NNLO}} + \dots\right)$$

Further improvement by summing also $(\alpha_s \ln v)^m$ to all orders: LL, NLL, ...

Status of QCD corrections

• NNLO QCD corrections

Hoang, Teubner '98–'99; Melnikov, Yelkhovsky '98; Yakovlev '98; Beneke, Signer, Smirnov '99; Nagano, Ota, Sumino '99; Penin, Pivovarov '98–'99

- NNNLO (partial)
 Beneke, Kiyo, Schuller '05–'08 (→ left figure) [+ contributions from Kiyo, Seidel, Steinhauser '08; Anzai, Kiyo, Sumino '09; Smirnov, Smirnov, Steinhauser '09–'10]
- NNLO & NNLL

Hoang, Manohar, Stewart, Teubner '00–'01; Hoang '03; Pineda, Signer '06; Stahlhofen, Hoang '11 (~>> right figure)

Effective field theory (EFT) for **pair production of unstable particles near threshold**

Beneke, Chapovsky, Khoze, Signer, Stirling, Zanderighi '01–'04; Actis, Beneke, Falgari, Schwinn, Signer, Zanderighi '07–'08

• Non-relativistic power counting:
$$\alpha_s^2 \sim \alpha_{\rm EW} \sim \frac{\Gamma_t}{m_t} \sim v^2 = 1 - \frac{4m_t^2}{s}$$

- Integrate out hard modes $\sim m_t \rightsquigarrow$ EFT with potential (nearly on-shell) top quarks.
- Extract cross section $e^+e^- \rightarrow W^+W^-b\bar{b}$ from appropriate cuts of the

 $e^+e^- \rightarrow e^+e^-$ forward-scattering amplitude:

resonant contributions

with production operators of potential $t\bar{t}$ pair

non-resonant contributions

correspond to full-theory diagrams expanded around $\Gamma_t = 0$ and $s = 4m_t^2$

 \Rightarrow Potential corrections to resonant diagrams within EFT \Rightarrow Hard corrections to matching coefficients of operators

Electroweak effects at LO

• Replacement rule $E = \sqrt{s} - 2m_t \rightarrow E + i\Gamma_t$ (\rightsquigarrow implemented in existing QCD corrections)

Electroweak effects at NLO

- Exchange of a "Coulomb photon": trivial extension of QCD corrections (available)
- Gluon exchange between top quarks and their decay products:

 → cancel at NLO & NNLO in the total cross section.

 They are still negligible for *loose* top invariant-mass cuts.
- Fadin, Khoze, Martin '94; Melnikov, Yakovlev '94; Hoang, Reißer '04

Fadin, Khoze '87

• Non-resonant corrections ~> this talk

Non-resonant effects at NNLO

• Gluon exchange added to NLO non-resonant diagrams ~> this talk

II Electroweak non-resonant NLO contributions

Non-resonant corrections at NLO:

- cuts through $bW^+\bar{t}$ (see diagrams) and $\bar{b}W^-t$ (not shown) in the 2-loop forward-scattering amplitude
- correspond to tree-level processes $e^+e^- \rightarrow bW^+\bar{t}$ and $e^+e^- \rightarrow \bar{b}W^-t$

e

 γ/Z

h8

• hard region at NLO:

 $\Gamma_t = 0$ and $s = 4m_t^2$

h9

[symmetric diagrams not shown]

h10

Form of non-resonant contributions

With the reconstructed top momentum $p_t = p_b + p_{W^+}$ (top only present in $h_1 - h_4$), the contributions of all diagrams (for $s = 4m_t^2$) are of the form:

$$\int_{\Delta^2}^{m_t^2} \mathrm{d}p_t^2 \, (m_t^2 - p_t^2)^{1/2 - \epsilon} \, H_i\!\left(\frac{p_t^2}{m_t^2}, \frac{M_W^2}{m_t^2}\right)$$

Total cross section: $\Delta^2 = M_W^2$

Top invariant-mass cuts:

Restrict invariant masses $M_{t,\bar{t}}$ of the reconstructed $t, \bar{t}: ||M_{t,\bar{t}} - m_t| \leq \Delta M_t$

 \hookrightarrow lower integration limit $\Delta^2=m_t^2-\Lambda^2$ with $\left|\Lambda^2=\left(2m_t-\Delta M_t
ight)\Delta M_t
ight|$

We focus on loose cuts with $\Delta M_t \gg \Gamma_t \iff \Lambda^2 \gg m_t \Gamma_t$ \hookrightarrow no cut needed for resonant contributions.

EW tree-level contributions: cut-dependence at threshold

cross section (for $\alpha_s = 0$) at threshold ($s = 4m_t^2$) as a function of the invariant-mass cut ΔM_t

Our result (solid-blue): EW non-resonant NLO + resonant NNLO tree-level contributions \hookrightarrow good agreement with MadGraph (MG) for loose cuts $\Delta M_t \gtrsim 5 \text{ GeV } \checkmark$ HRR result [Hoang, Reißer, Ruiz-Femenía '10]: dashed-brown \Rightarrow agreement for small $\Delta M_t \checkmark$ Our results confirmed (even diagram-wise) by approach of [Penin, Piclum '11] \checkmark

III NNLO contributions

Finite-width divergences in resonant contributions

Resonant contributions expanded for potential (nearly on-shell) top quarks,

but integrated over all momenta ~> uncancelled UV singularity from hard momenta!

 \hookrightarrow Cancellation with non-resonant (hard) contributions @ potential momenta.

Beneke, Kiyo '08

UV divergences are related to finite top width Γ_t via cut through NRQCD propagator:

• for stable top
$$\rightarrow \pi \, \delta \left(p^0 - \frac{\vec{p}^2}{2m_t} \right)$$
,
• for unstable top $\rightarrow \frac{\Gamma_t/2}{(p^0 - \vec{p}^2/2m_t)^2 + (\Gamma_t/2)^2}$ Breit–Wigner, UV-behaviour changed!

At **NNLO**: finite-width divergences $\propto \left| \frac{\alpha_s \frac{\Gamma_t}{\epsilon}}{\epsilon} \right|$ (in dimensional regularization)

$$\begin{aligned} \operatorname{div} \sigma_{\mathrm{res}}^{\mathrm{NNLO}} &= \left[(C_p^{(v)})^2 + (C_p^{(a)})^2 \right] 2N_{\mathrm{c}} \operatorname{div} \left[\operatorname{Im} G_{\dots}^{(2)} \right] \\ &+ \left[(C_{p,P\text{-wave}}^{(v)})^2 + (C_{p,P\text{-wave}}^{(a)})^2 \right] \frac{4N_{\mathrm{c}}}{3m_t^2} \operatorname{div} \left[\operatorname{Im} G_{P\text{-wave}}^{(2)} \right] \\ &+ \left[C_p^{(v)} C_p^{(v), \mathrm{abs}} + C_p^{(a)} C_p^{(a), \mathrm{abs}} \right] 4N_{\mathrm{c}} \operatorname{div} \left[\operatorname{Re} G_{\mathrm{C}}^{(0)} \right] \end{aligned}$$

Hoang, Reißer '04

Endpoint divergences in non-resonant contributions

 \hookrightarrow cancel finite-width divergences

Endpoint divergences of the phase-space integration at $p_t^2 \rightarrow m_t^2$ (because $\Gamma_t = 0$ here):

$$\begin{split} \mathbf{NLO:} & \stackrel{\bullet^+}{\underset{e}{\longrightarrow}} \frac{\gamma/Z}{\sqrt{\frac{1}{16}}} \stackrel{\gamma/Z}{\underset{e}{\longrightarrow}} \stackrel{e^-}{\underset{e}{\longrightarrow}} \sim \int \frac{m_t^2}{(m_t^2 - p_t^2)^{n+\epsilon}} \text{ with } n = \frac{3}{2}, \frac{1}{2}, \dots \\ & \hookrightarrow \text{ endpoint divergence } \underline{\text{finite}} \text{ in dim. reg.:} \qquad \int \frac{m_t^2}{m_t^2 - \Lambda^2} \frac{\mathrm{d}p_t^2}{(m_t^2 - p_t^2)^{\frac{3}{2}+\epsilon}} = -\frac{2}{\Lambda} + \mathcal{O}(\epsilon) \\ & \mathbf{NNLO:} \stackrel{\bullet^+}{\underset{e}{\longrightarrow}} \frac{\gamma/Z}{\sqrt{\frac{1}{16}}} \stackrel{\bullet^+}{\underset{e}{\longrightarrow}} \frac{\gamma/Z}{\sqrt{\frac{1}{16}}} \stackrel{e^+}{\underset{e}{\longrightarrow}} \sim \int \frac{m_t^2}{(m_t^2 - p_t^2)^{n+\epsilon\epsilon}} \text{ with } n = 2, \frac{3}{2}, 1, \frac{1}{2}, \dots \\ & \hookrightarrow \text{ endpoint divergence } \propto \boxed{\alpha_s \frac{\Gamma_t}{\epsilon}} \text{ from } n = 1: \\ & \mu^{4\epsilon} \int_{m_t^2 - \Lambda^2}^{m_t^2} \frac{\mathrm{d}p_t^2}{(m_t^2 - p_t^2)^{1+2\epsilon}} = -\frac{1}{2\epsilon} + \ln \frac{\Lambda^2}{\mu^2} + \mathcal{O}(\epsilon) \end{split}$$

Expand integrand in $(m_t^2-p_t^2)/m_t^2\iff$ asymptotic expansion of result in Λ/m_t

Endpoint-divergent non-resonant NNLO result $\begin{array}{c} \leftarrow \text{dominant contribution for small } \Lambda \text{ (or small } \Delta M_t \text{)} \end{array} \qquad \begin{array}{c} x = M_W^2/m_t^2 \\ C_{\dots}(s) = \gamma/Z \text{-prop. } \& e^{\pm} \text{-coupl.} \end{array}$ $\sigma_{\text{non-res}}^{\text{NNLO}} = \frac{64\pi^2 \,\alpha^2}{s} \,\frac{\Gamma_t}{m_t} \,N_{\text{c}} C_{\text{F}} \,\frac{\alpha_s}{4\pi} \left\{ \left[Q_t^2 \,C_{\gamma\gamma}(s) - 2Q_t v_t \,C_{\gamma Z}(s) + v_t^2 \,C_{ZZ}(s) \right] \left\{ 4 \,\frac{m_t^2}{\Lambda^2} \right\} \right\}$ $-\frac{m_t}{\Lambda} \frac{\sqrt{2}}{\pi^2} \left[2 \left(2 \ln x + \frac{5+4x}{1+2x} \right) \ln(1-x) + 8 \operatorname{Li}_2(x) + \frac{4\pi^2}{3} \right]$ $+ \frac{4x(1+x)(1-2x)}{(1-x)^2(1+2x)} \ln x + \frac{11+7x-26x^2}{(1-x)(1+2x)} \bigg| \bigg\}$ $+\left(\frac{1}{\epsilon}-2\ln\frac{\Lambda^{2}}{\mu^{2}}\right)\left\{-\frac{7+7x+22x^{2}}{6(1-x)(1+2x)}\left[Q_{t}^{2}C_{\gamma\gamma}(s)-2Q_{t}v_{t}C_{\gamma Z}(s)+v_{t}^{2}C_{Z Z}(s)\right]\right\}$ $+\frac{1}{3}a_t^2 C_{ZZ}(s) + \frac{1}{2}\left[Q_t a_t C_{\gamma Z}(s) - v_t a_t C_{ZZ}(s)\right] + \frac{1 - 5x - 2x^2}{6(1 + x)(1 + 2x)} \times$ $\times \left[Q_t Q_b C_{\gamma\gamma}(s) - \left(Q_t \left(v_b + a_b \right) + Q_b v_t \right) C_{\gamma Z}(s) + v_t \left(v_b + a_b \right) C_{ZZ}(s) \right]$ $+\frac{2+5x-2x^2}{6x(1+2x)}\left[Q_t C_{\gamma\gamma}(s) - \left(v_t + Q_t \frac{c_{\mathsf{w}}}{s_{\mathsf{w}}}\right)C_{\gamma Z}(s) + v_t \frac{c_{\mathsf{w}}}{s_{\mathsf{w}}}C_{ZZ}(s)\right]$ $-\frac{Q_t C_{\gamma}(s) + v_t C_Z(s)}{4(1-x)^3 (1+2x)} \left[x \ln\left(\frac{2}{x} - 1\right) + \frac{(1-x)(1-2x-23x^2)}{12x} \right] \right\}$

 $+ \mathcal{O}(\epsilon) + \mathsf{finite} \ \Lambda$ -independent terms $+ \mathcal{O}(\Lambda/m_t)$

- UV and IR singularities cancelled between diagrams \checkmark
- $1/\epsilon$ endpoint singularities & finite-width divergences cancel each other \checkmark
- comparison to HRR result: m_t^2/Λ^2 \checkmark , $\Lambda^0 \ln(\Lambda^2)$ \checkmark , m_t/Λ absent there

Hoang, Reißer, Ruiz-Femenía '10

Non-resonant NLO & NNLO contributions: cut-dependence at threshold

Perturbative expansion converges for loose cuts:

 $\alpha_s \, \frac{m_t^2}{\Lambda^2} \, \mathbb{O} \, \mathrm{NNLO} \ll \frac{m_t}{\Lambda} \, \mathbb{O} \, \mathrm{NLO} \quad \iff \quad \Lambda^2 \gg m_t \Gamma_t \sim m_t^2 \, \alpha_{\mathrm{EW}} \sim m_t^2 \, \alpha_s^2$

Full cross section with QCD LO + QED NLO + non-resonant contributions

IV Summary & outlook

Non-resonant contributions to threshold top-pair production at linear colliders

- NLO evaluated for total cross section and with top invariant-mass cuts ΔM_t : $\Delta \sigma_{\text{tot}}^{\text{NLO}} = -31 \text{ fb} (-3.1\%), \quad \Delta \sigma_{\Delta M_t=15 \text{ GeV}}^{\text{NLO}} = -42 \text{ fb} (-4.2\%)$ at threshold
- endpoint-divergent NNLO contributions \rightsquigarrow dominant terms for small ΔM_t : $\Delta \sigma_{\text{tot}}^{\text{NNLO}} = -17 \text{ fb} (-1.7\%), \quad \Delta \sigma_{\Delta M_t=15 \text{ GeV}}^{\text{NNLO}} = -30 \text{ fb} (-3.0\%) \text{ at threshold}$

 \hookrightarrow improve accuracy of NRQCD prediction

Singularities of NNLO contributions

- finite-width divergences from resonant contributions $\propto lpha_s \, \Gamma_t / \epsilon$
- endpoint divergences from non-resonant contributions $\propto lpha_s \, \Gamma_t / \epsilon$
- \hookrightarrow mutual cancellation shown \checkmark

Outlook

- complete non-resonant NNLO contributions (numerically)
- consistent addition with resonant NNLO contributions

Extra slides

NLO results & comparisons

obtained with $m_t = 172 \,\text{GeV}$ and $\Gamma_t = \Gamma_t^{\text{tree}} = 1.46550 \,\text{GeV}$

Tree-level comparison to MadGraph (MG)

- generated 10^4 events for $e^+e^- \rightarrow W^+W^-b\bar{b}$,
- analyzed dependence on invariant-mass cuts

Comparison to alternative approach

- invariant-mass cuts through "phase-space matching" within non-relativistic EFT (QCD & EW @ NLO + some NNLO contributions)
- contributions are expanded for moderate invariant-mass cuts $15 \text{ GeV} \le \Delta M_t \le 35 \text{ GeV}$

 \leftrightarrow our result is also valid for larger ΔM_t up to the total cross section.

• EW contributions match leading powers in Λ/m_t of our result \hookrightarrow agreement for small cut parameter ΔM_t or Λ Alwall et al. '07

Hoang, Reißer, Ruiz-Femenía '10

NLO non-resonant corrections: contributions of the diagrams

contribution to cross section as a function of the invariant-mass cut $m_t^2 - p_t^2 \leq \Lambda^2$

EW tree-level contributions: energy-dependence for different cuts cross section (for $\alpha_s = 0$) as a function of the centre-of-mass energy \sqrt{s}

