

Phenomenology 2011 Symposium Madison, May 9–11, 2011

Non-resonant corrections to top-pair production in the threshold region at linear colliders

Bernd Jantzen

RWTH Aachen University

In collaboration with Martin Beneke and Pedro Ruiz-Femenía

Nucl. Phys. B 840 (2010) 186, arXiv:1004.2188 [hep-ph] (and ongoing work)

- I Top-pair production at linear colliders near threshold
- II Electroweak non-resonant NLO contributions
- III Results & comparisons
- IV Singularities of NNLO contributions
- V Summary & outlook

Top-pair production at linear colliders near threshold

Future linear colliders (ILC/CLIC) with $\sqrt{s} \gtrsim 2m_t \approx 350 \text{ GeV} \rightsquigarrow \text{produce many } t\bar{t} \text{ pairs:}$ clean initial state of $e^+e^- \rightarrow t\bar{t}$ allows threshold scans with $\sqrt{s} \sim 2m_t$

 \hookrightarrow precise determination of top-quark parameters (m_t, Γ_t, \ldots) , especially as input for electroweak precision observables

Need also precise theoretical prediction!

QCD corrections are known (almost) up to NNNLO order, but electroweak (EW) non-resonant contributions were missing even at NLO!

The decay $t\bar{t} \rightarrow (bW^+)(\bar{b}W^-)$ is an EW effect.

⇒ Describe $t\bar{t}$ production in terms of the more physical process $e^+e^- \rightarrow W^+W^-b\bar{b}$. ⇒ Allow for invariant-mass cuts on reconstructed t, \bar{t} .

Perturbative expansion: NRQCD

Decay $t \to bW^+$ with $\Gamma_t \approx 1.5 \,\text{GeV} \gg \Lambda_{\text{QCD}} \Rightarrow t\bar{t}$ is perturbative at threshold. Bigi, Dokshitzer, Khoze, Kühn, Zerwas '86

1.4

1.2

0.6

0.4

0.2

NNLO

NLO

Top quarks move slowly near threshold: velocity $v \sim \alpha_s \ll 1$ \hookrightarrow sum $\left(\frac{\alpha_s}{n}\right)^n$ from "Coulomb gluons" to all orders

 \hookrightarrow expansion: LO, NLO, ... from additional powers of α_s or v

Further improvement by summing also $(\alpha_s \ln v)^m$ to all orders: LL, NLL, ...

Status of QCD corrections

- NNLO QCD corrections Hoang, Teubner '98-'99; Melnikov, Yelkhovsky '98; Yakovlev '98; Beneke, Signer, Smirnov '99; \simeq $^{0.8}$ Nagano, Ota, Sumino '99; Penin, Pivovarov '98-'99
- NNLO & (partial) NNLL Hoang, Manohar, Stewart, Teubner '00-'01; Hoang '03; Pineda, Signer '06

LO

NNNLO

 $m_{t,\mathsf{PS}}(20\,\mathrm{GeV}) = 175\,\mathrm{GeV}$

353

NNNLO [c3 = 0]

 $\mu_S = 30 \text{ GeV}$

354

Effective field theory (EFT) for pair production of unstable particles near threshold

Beneke, Chapovsky, Khoze, Signer, Stirling, Zanderighi '01-'04; Actis, Beneke, Falgari, Schwinn, Signer, Zanderighi '07-'08

• Non-relativistic power counting:
$$\alpha_s^2 \sim \alpha_{\rm EW} \sim \frac{\Gamma_t}{m_t} \sim v^2 = 1 - \frac{4m_t^2}{s}$$

- Integrate out hard modes $\sim m_t \rightsquigarrow$ EFT with potential (nearly on-shell) top quarks.
- Extract cross section $e^+e^- \rightarrow W^+W^-b\bar{b}$ from appropriate cuts of the

 $e^+e^- \rightarrow e^+e^-$ forward-scattering amplitude:

resonant contributions

with production operators of potential $t\bar{t}$ pair

non-resonant contributions

correspond to full-theory diagrams expanded around $\Gamma_t = 0$ and $s = 4m_t^2$

 \Rightarrow Potential corrections to resonant diagrams within EFT \Rightarrow Hard corrections to matching coefficients of operators

Electroweak effects at LO

• Replacement rule $E = \sqrt{s} - 2m_t \rightarrow E + i\Gamma_t$ (\rightsquigarrow implemented in existing QCD corrections)

Electroweak effects at NLO

- Exchange of a "Coulomb photon": trivial extension of QCD corrections (available)
- Gluon exchange between top quarks and their decay products:
 → cancel at NLO & NNLO in the total cross section.
 → Fadin, Khoze, Martin '94; Melnikov, Yakovlev '94; Hoang, Reißer '05
 They are still negligible for *loose* top invariant-mass cuts.
- Non-resonant (hard) corrections ~> topic of this talk!

Fadin, Khoze '87

Electroweak non-resonant NLO contribution

Non-resonant corrections at NLO:

- cuts through $bW^+\bar{t}$ (see diagrams) and $\overline{b}W^{-}t$ (not shown) in the 2-loop forward-scattering amplitude
- correspond to tree-level processes $e^+e^-
 ightarrow bW^+ ar{t}$ and $e^+e^-
 ightarrow ar{b}W^- t$

e

h8

hard region at NLO:

 $\Gamma_t = 0$ and $s = 4m_t^2$

h9

[symmetric diagrams not shown]

h10

Form of non-resonant contributions

With the reconstructed top momentum $p_t = p_b + p_{W^+}$ (top only present in $h_1 - h_4$), the contributions of all diagrams (for $s = 4m_t^2$) are of the form:

$$\int_{\Delta^2}^{m_t^2} \mathrm{d}p_t^2 \, (m_t^2 - p_t^2)^{1/2 - \epsilon} \, H_i\!\left(\frac{p_t^2}{m_t^2}, \frac{M_W^2}{m_t^2}\right)$$

Total cross section: $\Delta^2 = M_W^2$

Top invariant-mass cuts:

Restrict invariant masses $M_{t,\bar{t}}$ of the reconstructed t, \bar{t} : $|M_{t,\bar{t}} - m_t| \leq \Delta M_t$ \hookrightarrow lower integration limit: $M_W^2 \leq \Delta^2 < m_t^2$

We focus on loose cuts with $\Delta M_t \gg \Gamma_t$ \hookrightarrow no cut needed for resonant contributions.

III Results & comparisons

obtained with $m_t = 172 \,\mathrm{GeV}$ and $\Gamma_t = \Gamma_t^{\mathrm{tree}} = 1.46550 \,\mathrm{GeV}$

Tree-level comparison to MadGraph/MadEvent/MadAnalysis (MG) Alwall et al. '07

- generated 10^4 events for $e^+e^- \rightarrow W^+W^-b\bar{b}$,
- analyzed dependence on invariant-mass cuts

Comparison to recent alternative approach

Hoang, Reißer, Ruiz-Femenía '10

- invariant-mass cuts through "phase-space matching" within non-relativistic EFT (QCD & EW @ NLO + some NNLO contributions)
- contributions are expanded for moderate invariant-mass cuts $15 \text{ GeV} \le \Delta M_t \le 35 \text{ GeV}$

 \leftrightarrow our result is also valid for larger ΔM_t up to the total cross section.

• EW contributions match leading powers in $\Delta M_t/m_t$ of our result

 \hookrightarrow agreement for small cut parameter ΔM_t

EW tree-level contributions: cut-dependence at threshold cross section (for $\alpha_s = 0$) at threshold ($s = 4m_t^2$) as a function of the invariant-mass cut ΔM_t 0.10 full MG points, MG without Higgs, our result, 0.08 HRR result resonant contribution with 0.06 $\sigma_{Born} (pb)$ invariant-mass cuts 0.04 0.02 total cross section reached for $\Delta M_t = 91.6 \, \mathrm{GeV}$ 0.00 5 2 10 20 50 100 $\Delta M_t (GeV)$

Our result (solid-blue): EW non-resonant NLO + resonant NNLO tree-level contributions \hookrightarrow good agreement with MadGraph (MG) for loose cuts $\Delta M_t \gtrsim 5 \text{ GeV}$ Hoang-Reißer-Ruiz-Femenía (HRR) result: dashed-brown \Rightarrow agrees with our result for small ΔM_t Resonant contribution with inv.-mass cuts (LO): solid-brown \Rightarrow agrees with MG for tight cuts $\Delta M_t \lesssim \Gamma_t$

$\left[\alpha_{\circ}^{\overline{\text{MS}}}(30\,\text{GeV})=0.142\right]$ Full cross section with QCD LO & EW NLO contributions Relative sizes of EW NLO corrections w.r.t. QED resonant NLO **LO** (incl. resummed "Coulomb gluons"): combined 0 EW NLO QED resonant correction $\Delta\sigma/\sigma_{t\bar{t}}^{(0)}$ (%) ("Coulomb photons"). -.5 EW non-resonant NLO non-resonant NLO correction. combined EW NLO corrections -15 solid lines: total cross section -20 dashed lines: $\Delta M_t = 15 \text{ GeV}$ *-25*∟ *338* 340 342 344 346 348 350 \sqrt{s} (GeV) **Total cross section** Cross section with $\Delta M_t = 15\,{ m GeV}$ 1.2 1.2 QCD LO + QED NLOQCD LO + QED NLO1.0 1.0 QCD LO + QED NLOQCD LO + QED NLO+ non-resonant NLO + non-resonant NLO 0.8 0.8 α (*bp*) 0.6 Q(*d*) Ω ----- $\sigma_{t\bar{t}}^{(0)} + \sigma_{\text{QED}}^{(1)}$ ----- $\sigma_{t\bar{t}}^{(0)} + \sigma_{\text{OED}}^{(1)}$ 0.4 0.4 $\sigma_{t\bar{t}}^{(0)} + \sigma_{\text{OED}}^{(1)} + \sigma_{\text{non-res}}^{(1)}$ $\sigma_{t\bar{t}}^{(0)} + \sigma_{\text{OED}}^{(1)} + \sigma_{\text{non-res}}^{(1)}$ 0.2 0.2 344 342 338 340 342 346 348 350 340 344 346 348 350 338 \sqrt{s} (GeV)

IV Singularities of NNLO contributions

Singularities from resonant contributions

Divergences arise due to finite top width.

At **NNLO**: finite-width divergences $\propto \left| \frac{\alpha_s \frac{\Gamma_t}{\epsilon}}{\epsilon} \right|$ (in dimensional regularization)

 \hookrightarrow must be cancelled by non-resonant NNLO contributions.

Singularities from non-resonant contributions

End-point divergences of the phase-space integration at $p_t^2 \rightarrow m_t^2$: (because $\Gamma_t = 0$) NLO: $\sum_{t=1}^{e^+} \frac{\gamma/Z}{1-\epsilon} \int_{t=1}^{t} \frac{dp_t^2}{(m_t^2 - p_t^2)^{n+\epsilon}} \text{ with } n = \frac{3}{2}, \frac{1}{2}, \dots$ \hookrightarrow end-point divergence <u>finite</u> in dim. reg. $\left[\int_{\Lambda^2}^{m_t^2} \frac{\mathrm{d}p_t^2}{(m^2 - n^2)^{\frac{3}{2} + \epsilon}} = -\frac{2}{(m^2 - \Lambda^2)^{\frac{1}{2}}} + \mathcal{O}(\epsilon)\right]$ **NNLO**: γ/Z $p_{g}^{e^{+}}$ γ/Z $p_{g}^{e^{+}}$ $\sim \int \frac{dp_{t}^{2}}{(m_{t}^{2} - p_{t}^{2})^{n+a\epsilon}}$ with $n = 2, \frac{3}{2}, 1, \frac{1}{2}, \dots$ \hookrightarrow end-point divergence $\propto \left| \alpha_s \frac{\Gamma_t}{\epsilon} \right|$ from n = 1. $\left[\int_{\Lambda^2}^{m_t^2} \frac{\mathrm{d}p_t^2}{(m_t^2 - p_t^2)^{1+2\epsilon}} = -\frac{1}{2\epsilon} + \mathcal{O}(\epsilon^0) \right]$

- ⇒ Extract NNLO end-point divergences from gluon corrections to diagrams h₁-h₁₀.
 Difficulties: need loop & phase-space integration in 4 2ε dimensions
 overlapping of end-point & soft-collinear divergences
- \Rightarrow We have already evaluated several contributions. Work in progress \ldots

V Summary & outlook

Non-resonant contributions to $e^+e^- \rightarrow W^+W^-b\bar{b}$ in the $t\bar{t}$ resonance region

- NLO correction completed by EW non-resonant contributions for total cross section and with top invariant-mass cuts.
- $\Delta \sigma_{tot} \sim -30$ fb (-3% above threshold, higher impact below), with invariant-mass cuts even larger correction.
- \hookrightarrow Can be added to existing QCD results to improve accuracy of theoretical prediction.

Singularities of NNLO contributions

- Finite-width divergences from resonant contributions must cancel with end-point divergences from non-resonant gluon corrections.
- Evaluating end-point divergences & checking cancellation: work in progress ...

Outlook

Goal: calculate (complete/dominant?) NNLO non-resonant contributions.

Non-resonant corrections: contributions of the diagrams

contribution to cross section as a function of the invariant-mass cut $m_t^2 - p_t^2 \leq \Lambda^2$

EW tree-level contributions: energy-dependence for different cuts cross section (for $\alpha_s = 0$) as a function of the centre-of-mass energy \sqrt{s}

