

# Theorie-Palaver Johannes-Gutenberg-Universität Mainz May 8, 2012



# Asymptotic expansions with the strategy of regions

**Bernd Jantzen** 

RWTH Aachen University

Published as

"Foundation and generalization of the expansion by regions", JHEP 12 (2011) 076,

511L1 12 (2011) 010,

arXiv:1111.2589 [hep-ph]



#### **Overview**

#### I The strategy of regions

- asymptotic expansion of loop integrals
- introduction to the expansion by regions
- example: large-momentum expansion

#### II Why does the method work?

- ullet transforming original integral o series of expanded integrals
- overlap contribution

#### **III Examples**

- threshold expansion for heavy-particle pair production
- Sudakov form factor (→ non-commuting expansions)

#### IV The general formalism

- conditions on regions & expansions
- general identity with overlap contributions
- example: forward scattering with small momentum exchange

#### **V** Summary



#### **Overview**

#### I The strategy of regions

- asymptotic expansion of loop integrals
- introduction to the expansion by regions
- example: large-momentum expansion

#### II Why does the method work?

- ullet transforming original integral o series of expanded integrals
- overlap contribution

#### **III Examples**

- threshold expansion for heavy-particle pair production
- Sudakov form factor (→ non-commuting expansions)

#### **IV** The general formalism

- conditions on regions & expansions
- general identity with overlap contributions
- example: forward scattering with small momentum exchange

#### **V** Summary



# The strategy of regions

#### Starting point: (multi-)loop integral

(or other complicated integral)

$$F = \int d^d k_1 \int d^d k_2 \cdots I,$$

$$I = \frac{1}{(k_1 + p_1)^2 - m_1^2} \frac{1}{(k_1 + k_2 + p_2)^2 - m_2^2} \cdots$$



- ullet complicated function of internal masses  $m_i$  and kinematical parameters  $p_i^2$ ,  $p_i \cdot p_j$
- exact evaluation often hard or impossible

**Exploit parameter hierarchies**, e.g. large energies  $Q \gg$  small masses m:

- expand integral in small ratios  $\frac{m^2}{Q^2}$ :  $F = F_0 + \frac{m^2}{Q^2}F_1 + \left(\frac{m^2}{Q^2}\right)^2F_2 + \dots$
- simplification achieved if expansion of integrand before integration:

$$I \to I_0 + \frac{m^2}{Q^2} I_1 + \left(\frac{m^2}{Q^2}\right)^2 I_2 + \dots, \qquad F_j = \int d^d k_1 \int d^d k_2 \cdots I_j$$

ullet expanded integrands  $I_j$  often simpler to integrate than original integrand I



#### **Expansion of integrand before integration?**

$$I \to I_0 + \frac{m^2}{Q^2} I_1 + \left(\frac{m^2}{Q^2}\right)^2 I_2 + \dots, \qquad F_j = \int d^d k_1 \int d^d k_2 \cdots I_j$$

#### **But:**

- $\star$  integrand I is function of loop momenta:  $I = I(k_1, k_2, \ldots)$
- $\star$  loop-momentum components  $k_i^{\mu}$  can take any values (large, small, mixed, ...)
- $\star$  expansions of integrand may break down for certain values of  $k_1, k_2, \ldots$
- \* naive integrations of expanded integrand may generate new singularities
- → Need sophisticated methods of asymptotic expansions.



#### Simple example: large-momentum expansion

$$F = \int \frac{\mathrm{D}k}{(k+p)^2 (k^2 - m^2)^2} \qquad \int \mathrm{D}k \equiv \mu^{2\epsilon} e^{\epsilon \gamma_E} \int \frac{\mathrm{d}^d k}{i\pi^{d/2}} \qquad p = 0$$

$$\begin{bmatrix}
\int Dk \equiv \mu^{2\epsilon} e^{\epsilon \gamma_E} \int \frac{d^d k}{i\pi^{d/2}} \\
d = 4 - 2\epsilon
\end{bmatrix}$$



Large momentum  $|p^2| \gg m^2 \sim \exp$  and in  $\frac{m^2}{n^2}$ .

Integral is UV- and IR-finite, the exact result is known:

$$[p^2 \to p^2 + i0]$$

$$F = \frac{1}{p^2} \left[ \ln \left( \frac{-p^2}{m^2} \right) + \ln \left( 1 - \frac{m^2}{p^2} \right) \right] + \mathcal{O}(\epsilon)$$

$$\xrightarrow{\text{expand}} \frac{1}{p^2} \left[ \ln \left( \frac{-p^2}{m^2} \right) - \sum_{j=1}^{\infty} \frac{1}{j} \left( \frac{m^2}{p^2} \right)^j \right] + \mathcal{O}(\epsilon)$$

[Appearance of logarithm  $\rightsquigarrow$  simple expansion of integrand in powers of  $m^2$  is incorrect!]

Now assume that we could <u>not</u> calculate this integral exactly . . .



#### Large-momentum expansion (2)

Large momentum  $|p^2| \gg m^2$ 

 $\hookrightarrow$  expand integrand before integration:

$$F = \int \frac{\mathrm{D}k}{(k+p)^2 (k^2 - m^2)^2} \bigg|_{p} = \int_{p}^{k+p} \frac{\mathrm{D}k}{(k+p)^2 (k^2 -$$



#### **Expansion by regions**

 $\hookrightarrow$  here 2 relevant **regions**:

Beneke, Smirnov, Nucl. Phys. B 522 (1998) 321 Smirnov, Rakhmetov, Theor. Math. Phys. 120 (1999) 870 Smirnov, Phys. Lett. B 465 (1999) 226

• hard (h): 
$$k \sim p \Rightarrow \frac{1}{(k+p)^2 (k^2 - m^2)^2} \rightarrow \frac{1}{(k+p)^2} \left( \frac{1}{(k^2)^2} + \frac{2m^2}{(k^2)^3} + \ldots \right)$$

• soft (s): 
$$k \sim m \Rightarrow \frac{1}{(k+p)^2 (k^2 - m^2)^2} \rightarrow \frac{1}{(k^2 - m^2)^2} \left( \frac{1}{p^2} - \frac{2k \cdot p}{(p^2)^2} - \frac{k^2}{(p^2)^2} + \ldots \right)$$

- ⇒ Integrate each expanded term over the whole integration domain.
- ⇒ Set scaleless integrals to zero (like in dimensional regularization).

#### **Leading-order contributions:**

• hard: 
$$F_0^{(h)} = \int \frac{\mathrm{D}k}{(k+p)^2 (k^2)^2} = \frac{1}{p^2} \left( \frac{\mu^2}{-p^2} \right)^{\epsilon} \left( -\frac{1}{\epsilon} + \mathcal{O}(\epsilon) \right)$$

• soft: 
$$F_0^{(s)} = \int \frac{\mathrm{D}k}{p^2 (k^2 - m^2)^2} = \frac{1}{p^2} \left(\frac{\mu^2}{-p^2}\right)^{\epsilon} \left(\frac{m^2}{-p^2}\right)^{-\epsilon} \left(\frac{1}{\epsilon} + \mathcal{O}(\epsilon)\right)$$

 $\hookrightarrow$  Contributions are homogeneous functions of the expansion parameter  $\frac{m^2}{p^2}$ .



#### Large-momentum expansion (3)

$$F = \int \frac{Dk}{(k+p)^2 (k^2 - m^2)^2}$$



#### **Leading-order contributions:**

• hard: 
$$F_0^{(h)} = \int \frac{\mathrm{D}k}{(k+p)^2 (k^2)^2} = \frac{1}{p^2} \left[ -\frac{1}{\epsilon} + \ln \left( \frac{-p^2}{\mu^2} \right) \right] + \mathcal{O}(\epsilon) \rightsquigarrow \mathsf{IR}\text{-singular!}$$

• soft: 
$$F_0^{(s)} = \frac{1}{p^2} \int \frac{\mathrm{D}k}{(k^2 - m^2)^2} = \frac{1}{p^2} \left[ \frac{1}{\epsilon} + \ln\left(\frac{\mu^2}{m^2}\right) \right] + \mathcal{O}(\epsilon) \rightsquigarrow \mathsf{UV}\text{-singular!}$$

- $\hookrightarrow$  Singularities are cancelled in the sum of all contributions.

$$F_0 = F_0^{(h)} + F_0^{(s)} = \frac{1}{p^2} \ln\left(\frac{-p^2}{m^2}\right) + \mathcal{O}(\epsilon) = F + \mathcal{O}\left(\frac{m^2}{(p^2)^2}\right) \quad \checkmark$$



#### Large-momentum expansion (4)

$$F = \int \frac{\mathrm{D}k}{(k+p)^2 (k^2 - m^2)^2}$$



### Expansion to all orders in $\frac{m^2}{n^2}$ :

• soft: 
$$\sum_{j} T_{j}^{(s)} \frac{1}{(k+p)^{2}} = \sum_{j_{1},j_{2}=0}^{\infty} \frac{(j_{1}+j_{2})!}{j_{1}! j_{2}!} \frac{(-2k \cdot p)^{j_{1}} (-k^{2})^{j_{2}}}{(p^{2})^{1+j_{1}+j_{2}}}$$

$$\hookrightarrow F^{(s)} = \frac{1}{p^{2}} \left(\frac{\mu^{2}}{m^{2}}\right)^{\epsilon} e^{\epsilon \gamma_{E}} \Gamma(\epsilon) \sum_{j=0}^{\infty} \left(\frac{m^{2}}{p^{2}}\right)^{j} \frac{(\epsilon)_{j}}{(1-\epsilon)_{j}}$$

$$= \frac{1}{p^{2}} \left[\frac{1}{\epsilon} + \ln\left(\frac{\mu^{2}}{m^{2}}\right) - \ln\left(1 - \frac{m^{2}}{p^{2}}\right)\right] + \mathcal{O}(\epsilon)$$

#### Full result F exactly reproduced:

$$F = F^{(h)} + F^{(s)} = \frac{1}{p^2} \left[ \ln \left( \frac{-p^2}{m^2} \right) + \ln \left( 1 - \frac{m^2}{p^2} \right) \right] + \mathcal{O}(\epsilon) \quad \checkmark$$

#### Questions: Why does this expansion by regions work?

- What ensures the cancellation of singularities? (IR ↔ UV!)
- Didn't we double-count every  $k \in \mathbb{R}^d$  when replacing (for the leading order)  $\int Dk \to \int Dk \, T_0^{(h)} + \int Dk \, T_0^{(s)}$ ?
- How do we have to choose the regions?
   And how do we know that the chosen set of regions is complete?
- What is the role of scaleless integrals?



The expansion by regions has been applied successfully to many complicated loop integrals.

#### "Real-life" example

#### 2-loop vertex integral in the high-energy limit

Denner, B.J., Pozzorini '08

$$Q^2 \gg m_t^2 \sim M_{W,Z}^2$$

 $\hookrightarrow$  9 relevant regions: [labelled " $(k_1 - k_2)$ "]

Tabelled "
$$(k_1-k_2)$$
"

$$(h-h)$$
,  $(1c-h)$ ,  $(h-2c)$ ,  $(1c-1c)$ ,  $(1c-2c)$ ,  $(2c-2c)$ ,  $(1c-2uc)$ ,  $(2uc-2uc)$ ,  $(us-2c)$ 

- next-to-leading-logarithmic result obtained:  $\alpha^2 \{L^3, L^2/\epsilon, L/\epsilon^2, 1/\epsilon^3\}$ , where  $L = \ln(Q^2/M_W^2)$
- cross-checked with independent calculation based on sector decomposition



#### Practical note: how to find the relevant regions

- Look where the propagators have poles:
  - \* Large-momentum example:  $(k+p)^2=0$  at  $k\sim p$ ,  $k^2-m^2=0$  at  $k\sim m$ .
  - \* Close the integration contour of one component (e.g.  $k^0$ ,  $k^{\pm}$ ). For all residues investigate the scaling of the components.
- Use Mellin–Barnes (MB) representations:

$$\frac{1}{(A+B)^n} = \frac{1}{\Gamma(n)} \int_{-i\infty}^{i\infty} \frac{\mathrm{d}z}{2i\pi} \Gamma(n+z) \Gamma(-z) \frac{B^z}{A^{n+z}}$$

- 1. Evaluate the full (scalar) integral for generic propagator powers  $n_i$  in terms of multiple MB integrals.
- 2. Close MB contours involving the expansion parameter and extract the leading contributions.
- 3. The individual terms can be identified with corresponding regions by their homogeneous scaling with the expansion parameter depending on d and  $n_i$ .

[A subsequent expansion by regions often yields simpler expressions for the contributions.]

#### Practical note: how to find the relevant regions (2)

- Try all possible regions that you can imagine . . .
   If a region does not contribute, its integrals are scaleless.
- Automated by Mathematica code asy.m, Pak, A. Smirnov, Eur. Phys. J. C 71 (2011) 1626 finds non-scaleless contributions automatically via geometric approach:

```
AlphaRepExpand[\{k\}, \{(k+p)^2, k^2-m^2\}, \{p^2->1\}, \{m^2->x\}]
```

Expansion based on Feynman-parameter integral  $\rightsquigarrow$  result: list of regions with scalings of Feynman parameters in powers of the expansion parameter

Published version of asy.m: potential & Glauber regions not found

— update available soon

B.J., A. Smirnov, V. Smirnov, to be published



#### **Overview**

#### I The strategy of regions

- asymptotic expansion of loop integrals
- introduction to the expansion by regions
- example: large-momentum expansion

#### II Why does the method work?

- ullet transforming original integral o series of expanded integrals
- overlap contribution

#### **III Examples**

- threshold expansion for heavy-particle pair production
- Sudakov form factor (→ non-commuting expansions)

#### **IV** The general formalism

- conditions on regions & expansions
- general identity with overlap contributions
- example: forward scattering with small momentum exchange

#### **V** Summary



## II Why does the method work?

Idea based on a 1-dimensional toy example from M. Beneke (1997) [see also: Smirnov, Applied Asymptotic Expansions In Momenta And Masses]

#### Large-momentum example



Let us show step by step how the expansions reproduce the full result.

The expansions  $\sum_i T_i^{(h)}$ ,  $\sum_j T_j^{(s)}$  converge absolutely within domains  $D_h$ ,  $D_s$ :

(h): 
$$\frac{1}{(k^2 - m^2)^2} = \sum_i T_i^{(h)} \frac{1}{(k^2 - m^2)^2}$$
 within  $D_h = \left\{ k \in \mathbb{R}^d : |k^2| \ge \Lambda^2 \right\}$ ,

(s): 
$$\frac{1}{(k+p)^2} = \sum_j T_j^{(s)} \frac{1}{(k+p)^2}$$
 within  $D_s = \left\{ k \in \mathbb{R}^d : |k^2| < \Lambda^2 \right\}$ ,

with  $m^2 \ll \Lambda^2 \ll |p^2| \rightsquigarrow D_h \cup D_s = \mathbb{R}^d, \ D_h \cap D_s = \emptyset.$ 

The expansions **commute** with integrals restricted to the corresponding domains:

$$\int_{k \in D_h} Dk \underbrace{\frac{1}{(k+p)^2 (k^2 - m^2)^2}}_{I} = \sum_{i} \int_{k \in D_h} Dk T_i^{(h)} I, \qquad \int_{k \in D_s} Dk I = \sum_{j} \int_{k \in D_s} Dk T_j^{(s)} I$$



#### Transform the expression for the full integral:

$$F = \int_{k \in D_h} Dk I + \int_{k \in D_s} Dk I = \sum_{i} \int_{k \in D_h} Dk I_i^{(h)} I + \sum_{j} \int_{k \in D_s} Dk I_j^{(s)} I$$

$$= \sum_{i} \left( \int_{k \in \mathbb{R}^d} Dk I_i^{(h)} I - \sum_{j} \int_{k \in D_s} Dk I_j^{(s)} I_i^{(h)} I \right) + \sum_{j} \left( \int_{k \in \mathbb{R}^d} Dk I_j^{(s)} I - \sum_{i} \int_{k \in D_h} Dk I_i^{(h)} I \right)$$

The expansions commute: 
$$T_i^{(h)}T_j^{(s)}I=T_j^{(s)}T_i^{(h)}I\equiv T_{i,j}^{(h,s)}I$$

$$\Rightarrow \textbf{Identity:} \ F = \underbrace{\sum_{i} \int Dk \, T_{i}^{(h)} I}_{\boldsymbol{F^{(h)}}} + \underbrace{\sum_{j} \int Dk \, T_{j}^{(s)} I}_{\boldsymbol{F^{(s)}}} - \underbrace{\sum_{i,j} \int Dk \, T_{i,j}^{(h,s)} I}_{\boldsymbol{F^{(h,s)}}}$$

All terms are integrated over the whole integration domain  $\mathbb{R}^d$  as prescribed for the expansion by regions  $\Rightarrow$  location of boundary  $\Lambda$  between  $D_h, D_s$  is irrelevant.



Identity: 
$$F = \sum_{i} \int Dk \, T_i^{(h)} I + \sum_{j} \int Dk \, T_j^{(s)} I - \sum_{i,j} \int Dk \, T_{i,j}^{(h,s)} I$$

$$F^{(h)}$$

$$F^{(s)}$$

$$F^{(h,s)}$$

#### Additional overlap contribution $F^{(h,s)}$ ?

$$F^{(h,s)} = \sum_{i=0}^{\infty} (1+i) \sum_{j_1,j_2=0}^{\infty} (-1)^{j_2} \frac{(j_1+j_2)!}{j_1! \, j_2!} \, \frac{(m^2)^i}{(p^2)^{1+j_1+j_2}} \int \mathrm{D}k \, \frac{(-2k \cdot p)^{j_1}}{(k^2)^{2+i-j_2}} = 0 \quad \text{scaleless!}$$

Vanishing scaleless integrals → property of dimensional regularization and analytic continuation, <u>not</u> ad-hoc requirement of the formalism here!

Both UV- and IR-singularities are regularized dimensionally. Separate singularities:

$$F^{(h,s)} = \frac{1}{p^2} \left( \frac{1}{\epsilon_{\mathsf{UV}}} - \frac{1}{\epsilon_{\mathsf{IR}}} \right) = 0$$

from  $\int \frac{\mathrm{D}k}{(k^2)^2} = \frac{1}{\epsilon_{\mathsf{UV}}} - \frac{1}{\epsilon_{\mathsf{IR}}} \leadsto \mathsf{cancels}$  corresponding singularities in

$$F^{(h)} = \tfrac{1}{p^2} \Bigl( - \tfrac{1}{\epsilon_{\mathsf{IR}}} + \mathcal{O}(\epsilon^0) \Bigr) \text{ and } F^{(s)} = \tfrac{1}{p^2} \Bigl( \tfrac{1}{\epsilon_{\mathsf{UV}}} + \mathcal{O}(\epsilon^0) \Bigr).$$

 $\hookrightarrow$  Complete result  $F=F^{(h)}+F^{(s)}-F^{(h,s)}$  is separately UV-finite and IR-finite.

$$\Rightarrow$$
  $F = F^{(h)} + F^{(s)}$  as found before.

But now this identity has been obtained without evaluating F,  $F^{(h)}$ ,  $F^{(s)}$ !



#### **Overview**

#### I The strategy of regions

- asymptotic expansion of loop integrals
- introduction to the expansion by regions
- example: large-momentum expansion

#### II Why does the method work?

- ullet transforming original integral o series of expanded integrals
- overlap contribution

#### **III Examples**

- threshold expansion for heavy-particle pair production
- Sudakov form factor (→ non-commuting expansions)

#### IV The general formalism

- conditions on regions & expansions
- general identity with overlap contributions
- example: forward scattering with small momentum exchange

#### **V** Summary



# **Examples**

#### Example with 3 regions: threshold expansion for heavy-particle pair production

$$F = \int \frac{Dk}{(k^2 + q_0 k_0 - 2\vec{p} \cdot \vec{k}) (k^2 - q_0 k_0 - 2\vec{p} \cdot \vec{k}) k^2}$$



#### Relevant regions:

- hard (h):  $k_0, |\vec{k}| \sim q_0 \Rightarrow \text{ expand } \sum_j T_j^{(h)} \text{ in } D_h = \left\{ k \in \mathbb{R}^d : |k_0| \gg |\vec{p}| \text{ or } |\vec{k}| \gg |\vec{p}| \right\}$
- **soft** (s):  $k_0, |\vec{k}| \sim |\vec{p}| \Rightarrow \text{expand } \sum_j T_j^{(s)} \text{ in } D_s = \left\{ k \in \mathbb{R}^d : |\vec{k}| \lesssim |k_0| \lesssim |\vec{p}| \right\}$
- potential (p):  $k_0 \sim \frac{\vec{p}^{\,2}}{q_0}$ ,  $|\vec{k}| \sim |\vec{p}| \Rightarrow \sum_j T_j^{(p)}$  in  $D_p = \left\{ k \in \mathbb{R}^d : |k_0| \ll |\vec{k}| \lesssim |\vec{p}| \right\}$

[no explicit boundaries needed]

- $\hookrightarrow$  The expansion  $T^{(x)} \equiv \sum_{i} T_{i}^{(x)}$  converges for  $k \in D_{x}$  (x = h, s, p).
- $\hookrightarrow D_h \cup D_s \cup D_p = \mathbb{R}^d$ ,  $D_h \cap D_s = D_h \cap D_p = D_s \cap D_p = \emptyset$
- $\hookrightarrow$  The expansions  $T^{(h)}, T^{(s)}, T^{(p)}$  commute with each other.



#### Threshold expansion (2)

Similar transformations as for the large-momentum example yield the following **identity**:



$$F = F^{(h)} + \underbrace{F^{(s)}}_{=0} + F^{(p)} - \left(\underbrace{F^{(h,s)}}_{=0} + \underbrace{F^{(h,p)}}_{=0} + \underbrace{F^{(s,p)}}_{=0}\right) + \underbrace{F^{(h,s,p)}}_{=0}$$
 (scaleless)

with

$$\begin{split} F^{(h)} &= -\frac{2\,e^{\epsilon\gamma_E}\,\Gamma(\epsilon)}{q^2} \left(\frac{4\mu^2}{q^2}\right)^\epsilon \sum_{j=0}^\infty \left(-\frac{4p^2}{q^2}\right)^j \,\frac{(1+\epsilon)_j}{j!\,(1+2\epsilon+2j)} \\ F^{(p)} &= \frac{e^{\epsilon\gamma_E}\,\Gamma(\frac{1}{2}+\epsilon)\,\sqrt{\pi}}{2\epsilon\,\sqrt{q^2\,(p^2-i0)}} \left(\frac{\mu^2}{p^2-i0}\right)^\epsilon \quad \left[\text{higher orders vanish}\right] \end{split}$$

Exact result reproduced:

$$\mathbf{F}^{(h)} + \mathbf{F}^{(p)} = F = \frac{e^{\epsilon \gamma_E} \Gamma(\epsilon)}{2p^2} \left( \frac{\mu^2}{p^2 - i0} \right)^{\epsilon} {}_{2}F_{1} \left( \frac{1}{2}, 1 + \epsilon; \frac{3}{2}; -\frac{q^2}{4p^2} - i0 \right) \quad \checkmark$$



#### **Example with non-commuting expansions: Sudakov form factor**

Cannot always choose expansions which commute with each other.

Sudakov limit:  $-(p_1 - p_2)^2 = \boxed{Q^2 \gg m^2}$ 



 $\hookrightarrow$  analytic regulator  $\delta \to 0$ 

[light-cone coordinates:  $2p_{1,2} \cdot k = Qk^{\pm}$ ,  $p_{1,2} \cdot k_{\perp} = 0$ ]

#### Regions & domains:

- hard (h):  $k^+, k^-, |\vec{k}_\perp| \sim Q \Rightarrow D_h = \left\{ k \in \mathbb{R}^d : \vec{k}_\perp^2 \gg m^2 \right\}$
- 1-collinear (1c):  $k^+ \sim \frac{m^2}{Q}$ ,  $k^- \sim Q$ ,  $|\vec{k}_{\perp}| \sim m$
- 2-collinear (2c):  $k^+ \sim Q$ ,  $k^- \sim \frac{m^2}{Q}$ ,  $|\vec{k}_{\perp}| \sim m$
- Glauber (g):  $k^+, k^- \sim \frac{m^2}{Q}$ ,  $|\vec{k}_{\perp}| \sim m$
- collinear-plane (cp):  $k^+, k^- \sim Q$ ,  $|\vec{k}_{\perp}| \sim m$   $\hookrightarrow$  "artificial" region to ensure  $\cup_x D_x = \mathbb{R}^d$

[No soft region needed:  $T^{(s)} \equiv T^{(1c)}T^{(2c)}$ ]

Most expansions commute, but  $T^{(g)}T^{(cp)} \neq T^{(cp)}T^{(g)}$ !





#### **Sudakov form factor (2)**

 $T^{(g)}T^{(cp)} \neq T^{(cp)}T^{(g)} \rightsquigarrow \text{Construct identity} \text{ avoiding combination of } (g) \text{ and } (cp)$ :

$$F = F^{(h)} + F^{(1c)} + F^{(2c)} + F^{(g)} + F^{(cp)}$$

$$- \left( F^{(h,1c)} + F^{(h,2c)} + F^{(h,g)} + F^{(h,cp)} + F^{(1c,2c)} + F^{(1c,g)} + F^{(1c,cp)} + F^{(2c,g)} + F^{(2c,cp)} \right)$$

$$+ F^{(h,1c,2c)} + F^{(h,1c,g)} + F^{(h,1c,cp)} + F^{(h,2c,g)} + F^{(h,2c,cp)} + F^{(1c,2c,g)} + F^{(1c,2c,cp)}$$

$$- \left( F^{(h,1c,2c,g)} + F^{(h,1c,2c,cp)} \right) + F^{\text{extra}}_{cp \leftarrow g} + F^{\text{extra}}_{g \leftarrow cp}$$

#### **Usual terms:**

- no combination of (g) and (cp)
- $F^{(g)}$ ,  $F^{(cp)}$  and all overlap contributions are scaleless (with analytic regularization)

#### Extra terms:

- $F_{cp \leftarrow g}^{\text{extra}}$  involves  $T^{(cp)}T^{(g)}$  integrated over  $k \in D_{cp}$ ,
- ullet  $F_{g\leftarrow cp}^{\mathrm{extra}}$  involves  $T^{(g)}T^{(cp)}$  integrated over  $k\in D_g$ ,

plus all combinations of  $T^{(h)}, T^{(1c)}, T^{(2c)}$ , with alternating signs.





#### Sudakov form factor (3)

Both extra terms cancel at the integrand level:

$$\begin{split} F_{g \leftarrow cp}^{\text{extra}} &= \int \mathrm{D}k \left( -1 + T^{(h)} + T^{(1c)} + T^{(2c)} \right. \\ &- T^{(h,1c)} - T^{(h,2c)} - T^{(1c,2c)} + T^{(h,1c,2c)} \right) T^{(g)} T^{(cp)} I \\ &= (-1 + 3 - 3 + 1) \int \mathrm{D}k \, T^{(g)} T^{(cp)} I = 0 \end{split}$$

because  $T^{(x)}T^{(g)}T^{(cp)} = T^{(g)}T^{(cp)} \ \forall x \in \{h, 1c, 2c\}.$ 

Similarly:  $F_{cp \leftarrow g}^{\text{extra}} = 0$ .

[The extra terms must cancel  $\rightsquigarrow$  otherwise dependence on boundaries of  $D_g$ ,  $D_{cp}$ .]



#### Sudakov form factor (4)

Omitting scaleless contributions and vanishing extra terms:

$$F = F^{(h)} + F^{(1c)} + F^{(2c)}$$



# Regions explicitly evaluated to all orders in $\frac{m^2}{Q^2}$ :

[omitting  $\mathcal{O}(\delta)$  and  $\mathcal{O}(\epsilon)$ ]

$$F^{(h)} = -\frac{1}{Q^2} \left(\frac{\mu^2}{Q^2}\right)^{\epsilon} \left\{ \frac{1}{\epsilon^2} - \frac{2}{\epsilon} \ln\left(1 - \frac{m^2}{Q^2}\right) + \ln^2\left(1 - \frac{m^2}{Q^2}\right) - 2\operatorname{Li}_2\left(\frac{m^2}{Q^2}\right) - \frac{\pi^2}{12} \right\}$$

$$F^{(1c)}, F^{(2c)} = -\frac{1}{2Q^2} \left(\frac{\mu^2}{Q^2}\right)^{\epsilon} \left\{ \pm \frac{1}{\delta} \left[ \frac{1}{\epsilon} + \ln\frac{Q^2}{m^2} - \ln\left(1 - \frac{m^2}{Q^2}\right) \right] - \frac{1}{\epsilon^2} + \frac{2}{\epsilon} \ln\left(1 - \frac{m^2}{Q^2}\right) + \frac{1}{2} \ln^2\frac{Q^2}{m^2} + \ln\frac{Q^2}{m^2} \ln\left(1 - \frac{m^2}{Q^2}\right) - \ln^2\left(1 - \frac{m^2}{Q^2}\right) + \operatorname{Li}_2\left(\frac{m^2}{Q^2}\right) + \frac{5}{12}\pi^2 \right\}$$

 $\hookrightarrow F^{(1c)}$  and  $F^{(2c)}$  are not separately finite for  $\delta \to 0$ , but their sum is.

#### Compare to exact result:

$$F = -\frac{1}{Q^2} \left\{ \frac{1}{2} \ln^2 \frac{Q^2}{m^2} + \ln \frac{Q^2}{m^2} \ln \left( 1 - \frac{m^2}{Q^2} \right) - \text{Li}_2 \left( \frac{m^2}{Q^2} \right) + \frac{\pi^2}{3} \right\} \quad \checkmark$$



#### Sudakov form factor $\rightarrow$ 5-point integral with Glauber contribution



- collinear propagators "doubled", but expansions equivalent
- same regions & domains
- "double" propagators → Glauber contribution present (even with analytic regularization)
- leading contributions:

$$F_0^{(g)} \propto \frac{1}{(Q^2)^3} \left(\frac{\mu^2}{Q^2}\right)^{\epsilon} \left(\frac{m^2}{Q^2}\right)^{-2-\epsilon}$$

$$F_0^{(1c)}, F_0^{(2c)} \propto \frac{1}{(Q^2)^3} \left(\frac{\mu^2}{Q^2}\right)^{\epsilon} \left(\frac{m^2}{Q^2}\right)^{-1-\epsilon}$$

$$F_0^{(h)} \propto \frac{1}{(Q^2)^3} \left(\frac{\mu^2}{Q^2}\right)^{\epsilon}$$



#### **Overview**

#### I The strategy of regions

- asymptotic expansion of loop integrals
- introduction to the expansion by regions
- example: large-momentum expansion

#### II Why does the method work?

- ullet transforming original integral o series of expanded integrals
- overlap contribution

#### **III Examples**

- threshold expansion for heavy-particle pair production
- Sudakov form factor (→ non-commuting expansions)

#### **IV** The general formalism

- conditions on regions & expansions
- general identity with overlap contributions
- example: forward scattering with small momentum exchange

#### **V** Summary



# IV The general formalism

Identities as in the previous examples are generally valid, under some conditions.

#### **Consider**

- ullet a (multiple) integral  $F=\int\!\mathrm{D} k\,I$  over the domain D (e.g.  $D=\mathbb{R}^d$ ),
- ullet a set of N regions  $R = \{x_1, \dots, x_N\}$ ,
- for each region  $x \in R$  an expansion  $T^{(x)} = \sum_j T_j^{(x)}$  which converges absolutely in the domain  $D_x \subset D$ .

#### **Conditions**

- $\bigcup_{x \in B} D_x = D$ ,  $D_x \cap D_{x'} = \emptyset \ \forall x \neq x'$ .
- Some of the expansions commute with each other.

Let 
$$R_{\rm c} = \{x_1, \dots, x_{N_{\rm c}}\}$$
 and  $R_{\rm nc} = \{x_{N_{\rm c}+1}, \dots, x_N\}$  with  $1 \le N_{\rm c} \le N$ . Then:  $T^{(x)}T^{(x')} = T^{(x')}T^{(x)} \equiv T^{(x,x')} \ \forall x \in R_{\rm c}, \ x' \in R$ .

- Every pair of non-commuting expansions is invariant under some expansion from  $R_c$ :  $\forall x_1', x_2' \in R_{nc}, x_1' \neq x_2', \exists x \in R_c : T^{(x)}T^{(x_2')}T^{(x_1')} = T^{(x_2')}T^{(x_1')}$ .
- • ∃ regularization for singularities, e.g. dimensional (+ analytic) regularization.

   • All expanded integrals and series expansions in the formalism are well-defined.

#### The general formalism (2)

Under these conditions, the following **identity** holds:  $[F^{(x,...)} \equiv \sum_{i,...} \int Dk T_{i,...}^{(x,...)} I]$ 

$$[F^{(x,\dots)} \equiv \sum_{j,\dots} \int Dk \, T_{j,\dots}^{(x,\dots)} I]$$

$$F = \sum_{x \in R} F^{(x)} - \sum_{\{x_1', x_2'\}}^{\langle R_{\mathsf{c}} + 1 \rangle} F^{(x_1', x_2')} + \ldots - (-1)^n \sum_{x_1', \dots, x_n'}^{\langle R_{\mathsf{c}} + 1 \rangle} F^{(x_1', \dots, x_n')} + \ldots + (-1)^{N_{\mathsf{c}}} \sum_{x_1' \in R_{\mathsf{nc}}} F^{(x_1', x_1, \dots, x_n')}$$

where the sums run over subsets  $\{x_1', \ldots\}$  containing at most one region from  $R_{\rm nc}$ .

#### **Comments**

- This identity is exact when the expansions are summed to all orders. Leading-order approximation for  $F \rightsquigarrow$  dropping higher-order terms.
- It is independent of the regularization (dim. reg., analytic reg., cut-off, infinitesimal masses/off-shellness, ...) as long as all individual terms are well-defined.
- Usually regions & regularization are chosen such that multiple expansions  $F^{(x'_1,...,x'_n)}$   $(n \ge 2)$  are scaleless and vanish. [ $\checkmark$  if each  $F_0^{(x)}$  is a homogeneous function of the expansion parameter with unique scaling.]
- If  $\exists F^{(x'_1, x'_2, \dots)} \neq 0 \rightsquigarrow \text{relevant overlap contributions } (\rightarrow \text{"zero-bin subtractions"}).$ They appear e.g. when avoiding analytic regularization in SCET. e.g. Manohar, Stewart '06; Chiu, Fuhrer, Hoang, Kelley, Manohar '09; ...



# Example with relevant overlap contributions: forward scattering with small momentum exchange



Two light-like particles with large centre-of-mass energy exchange a small momentum r:

$$p_1^2 = (p_1 - r)^2 = p_2^2 = (p_2 + r)^2 = 0$$
  
 $(p_1 + p_2)^2 = \boxed{Q^2 \gg \vec{r}_\perp^2}, \quad r^{\pm} \approx \mp \frac{\vec{r}_\perp^2}{Q}$ 

Symmetrize integral under  $k\leftrightarrow r-k$   $\hookrightarrow$  avoids divergences at  $|k^{\pm}|\to\infty$  under expansion.

$$F = \frac{1}{2} \int \frac{\mathrm{D}k}{k^2 (r-k)^2} \left( \frac{1}{((p_1-k)^2)^{1+\delta}} + \frac{1}{((p_1-r+k)^2)^{1+\delta}} \right) \times \left( \frac{1}{((p_2+k)^2)^{1-\delta}} + \frac{1}{((p_2+r-k)^2)^{1-\delta}} \right)$$





**Regions:** same as for Sudakov form factor (scaling with  $m \to |\vec{r}_{\perp}|$ ),

**Domains:** similar (but more involved for  $|\vec{k}_{\perp}| \gg |\vec{r}_{\perp}|$ )



#### Forward scattering (2)

Same identity as for Sudakov form factor:

Forward scattering (2) 
$$F = F^{(h)} + F^{(1c)} + F^{(2c)} + F^{(g)} + F^{(cp)} + F^{(1c,2c)} + F^{(1c,2c)} + F^{(1c,2c)} + F^{(1c,2c,p)} + F^$$

With analytic regulator  $\delta \to 0$ :  $\left| F_0 = F_0^{(1c)} + F_0^{(2c)} \right| \quad [F_0^{(h)}]$  suppressed, others scaleless]

$$F_0 = F_0^{(1c)} + F_0^{(2c)}$$

$$F_0^{(1c)} = F_0^{(2c)} = \frac{1}{2} \frac{i\pi}{Q^2 \vec{r}_{\perp}^2} \left(\frac{\mu^2}{\vec{r}_{\perp}^2}\right)^{\epsilon} \frac{e^{\epsilon \gamma_E} \Gamma(1+\epsilon) \Gamma^2(-\epsilon)}{\Gamma(-2\epsilon)}$$

Without analytic regularization ( $\delta = 0$ ):

[all terms are still well-defined]

$$F_0 = F_0^{(1c)} + F_0^{(2c)} + F_0^{(g)} - \left(F_0^{(1c,2c)} + F_0^{(1c,g)} + F_0^{(2c,g)}\right) + F_0^{(1c,2c,g)}$$

$$F_0^{(x,\dots)} = \frac{i\pi}{Q^2 \vec{r}_\perp^2} \left(\frac{\mu^2}{\vec{r}_\perp^2}\right)^{\epsilon} \frac{e^{\epsilon \gamma_E} \Gamma(1+\epsilon) \Gamma^2(-\epsilon)}{\Gamma(-2\epsilon)} \quad \forall \{x,\dots\} \subset \{1c,2c,g\}$$

 $\hookrightarrow$  consistent results independent of regularization:  $\frac{1}{2} + \frac{1}{2} = 1 + 1 + 1 - (1 + 1 + 1) + 1$ 

→ agreement with leading-order expansion of full result



#### **Overview**

#### I The strategy of regions

- asymptotic expansion of loop integrals
- introduction to the expansion by regions
- example: large-momentum expansion

#### II Why does the method work?

- ullet transforming original integral o series of expanded integrals
- overlap contribution

#### **III Examples**

- threshold expansion for heavy-particle pair production
- Sudakov form factor (→ non-commuting expansions)

#### **IV** The general formalism

- conditions on regions & expansions
- general identity with overlap contributions
- example: forward scattering with small momentum exchange

#### **V** Summary



# **V** Summary

#### **Expansion by regions for general integrals**

- Conditions for regions (+ corresponding expansions & domains) established.
- Identity proven → relates exact integral to sum of expanded terms:

$$F = \sum_{x \in R} F^{(x)} - \sum_{\{x_1', x_2'\} \subset R} F^{(x_1', x_2')} + \dots - (-1)^n \sum_{x_1', \dots, x_n'} F^{(x_1', \dots, x_n')} + \dots + (-1)^{N_c} \sum_{x_1' \in R_{\mathsf{nc}}} F^{(x_1', x_1, \dots, x_{N_c})}$$

- → valid independent of the choice of regularization
- This identity includes overlap contributions with multiple expansions

  - $\hookrightarrow$  generalization of known recipe.

#### **Application to example integrals**

- setup of the regions, expansions & convergence domains,
- check of conditions,
- evaluation of expanded integrals,
- comparison to exact result.