Theorie-Palaver
 Johannes-Gutenberg-Universität Mainz
 May 8, 2012

Asymptotic expansions with the strategy of regions

Bernd Jantzen
RWTH Aachen University

> Published as
"Foundation and generalization of the expansion by regions", JHEP 12 (2011) 076,

```
arXiv:1111.2589 [hep-ph]
```


Overview

I The strategy of regions

- asymptotic expansion of loop integrals
- introduction to the expansion by regions
- example: large-momentum expansion

II Why does the method work?

- transforming original integral \rightarrow series of expanded integrals
- overlap contribution

III Examples

- threshold expansion for heavy-particle pair production
- Sudakov form factor (\rightsquigarrow non-commuting expansions)

IV The general formalism

- conditions on regions \& expansions
- general identity with overlap contributions
- example: forward scattering with small momentum exchange

V Summary

Overview

I The strategy of regions

- asymptotic expansion of loop integrals
- introduction to the expansion by regions
- example: large-momentum expansion

II Why does the method work?

- transforming original integral \rightarrow series of expanded integrals
- overlap contribution

III Examples

- threshold expansion for heavy-particle pair production
- Sudakov form factor (\rightsquigarrow non-commuting expansions)

IV The general formalism

- conditions on regions \& expansions
- general identity with overlap contributions
- example: forward scattering with small momentum exchange

I The strategy of regions

Starting point: (multi-)loop integral

 (or other complicated integral)$$
\begin{aligned}
F & =\int \mathrm{d}^{d} k_{1} \int \mathrm{~d}^{d} k_{2} \cdots I \\
I & =\frac{1}{\left(k_{1}+p_{1}\right)^{2}-m_{1}^{2}} \frac{1}{\left(k_{1}+k_{2}+p_{2}\right)^{2}-m_{2}^{2}} \cdots
\end{aligned}
$$

- complicated function of internal masses m_{i} and kinematical parameters $p_{i}^{2}, p_{i} \cdot p_{j}$
- exact evaluation often hard or impossible

Exploit parameter hierarchies, e.g. large energies $Q \gg$ small masses m :

- expand integral in small ratios $\frac{m^{2}}{Q^{2}}: F=F_{0}+\frac{m^{2}}{Q^{2}} F_{1}+\left(\frac{m^{2}}{Q^{2}}\right)^{2} F_{2}+\ldots$
- simplification achieved if expansion of integrand before integration:

$$
I \rightarrow I_{0}+\frac{m^{2}}{Q^{2}} I_{1}+\left(\frac{m^{2}}{Q^{2}}\right)^{2} I_{2}+\ldots, \quad F_{j}=\int \mathrm{d}^{d} k_{1} \int \mathrm{~d}^{d} k_{2} \cdots I_{j}
$$

- expanded integrands I_{j} often simpler to integrate than original integrand I

Expansion of integrand before integration?

$$
I \rightarrow I_{0}+\frac{m^{2}}{Q^{2}} I_{1}+\left(\frac{m^{2}}{Q^{2}}\right)^{2} I_{2}+\ldots, \quad F_{j}=\int \mathrm{d}^{d} k_{1} \int \mathrm{~d}^{d} k_{2} \cdots I_{j}
$$

But:

* integrand I is function of loop momenta: $I=I\left(k_{1}, k_{2}, \ldots\right)$
\star loop-momentum components k_{i}^{μ} can take any values (large, small, mixed, ...)
\star expansions of integrand may break down for certain values of k_{1}, k_{2}, \ldots
* naive integrations of expanded integrand may generate new singularities
\hookrightarrow Need sophisticated methods of asymptotic expansions.

Simple example: large-momentum expansion

Large momentum $\left|p^{2}\right| \gg m^{2} \rightsquigarrow$ expand in $\frac{m^{2}}{p^{2}}$.
Integral is UV- and IR-finite, the exact result is known:
$\left[p^{2} \rightarrow p^{2}+i 0\right]$

$$
\begin{aligned}
F & =\frac{1}{p^{2}}\left[\ln \left(\frac{-p^{2}}{m^{2}}\right)+\ln \left(1-\frac{m^{2}}{p^{2}}\right)\right]+\mathcal{O}(\epsilon) \\
& \xrightarrow[\text { expand }]{ } \frac{1}{p^{2}}\left[\ln \left(\frac{-p^{2}}{m^{2}}\right)-\sum_{j=1}^{\infty} \frac{1}{j}\left(\frac{m^{2}}{p^{2}}\right)^{j}\right]+\mathcal{O}(\epsilon)
\end{aligned}
$$

[Appearance of logarithm \rightsquigarrow simple expansion of integrand in powers of m^{2} is incorrect!]

Now assume that we could not calculate this integral exactly ...

Large-momentum expansion (2)

Large momentum $\left|p^{2}\right| \gg m^{2}$

$$
F=\int \frac{\mathrm{D} k}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}}
$$

\hookrightarrow expand integrand before integration:

Expansion by regions

\hookrightarrow here 2 relevant regions:

Beneke, Smirnov, Nucl. Phys. B 522 (1998) 321
Smirnov, Rakhmetov, Theor. Math. Phys. 120 (1999) 870
Smirnov, Phys. Lett. B 465 (1999) 226

- hard $(h): k \sim p \Rightarrow \frac{1}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}} \rightarrow \frac{1}{(k+p)^{2}}\left(\frac{1}{\left(k^{2}\right)^{2}}+\frac{2 m^{2}}{\left(k^{2}\right)^{3}}+\ldots\right)$
- $\operatorname{soft}(s): k \sim m \Rightarrow \frac{1}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}} \rightarrow \frac{1}{\left(k^{2}-m^{2}\right)^{2}}\left(\frac{1}{p^{2}}-\frac{2 k \cdot p}{\left(p^{2}\right)^{2}}-\frac{k^{2}}{\left(p^{2}\right)^{2}}+\ldots\right)$
\Rightarrow Integrate each expanded term over the whole integration domain.
\Rightarrow Set scaleless integrals to zero (like in dimensional regularization).

Leading-order contributions:

- hard: $F_{0}^{(h)}=\int \frac{\mathrm{D} k}{(k+p)^{2}\left(k^{2}\right)^{2}}=\frac{1}{p^{2}}\left(\frac{\mu^{2}}{-p^{2}}\right)^{\epsilon}\left(-\frac{1}{\epsilon}+\mathcal{O}(\epsilon)\right)$
- $\boldsymbol{\operatorname { s o f t }}: F_{0}^{(s)}=\int \frac{\mathrm{D} k}{p^{2}\left(k^{2}-m^{2}\right)^{2}}=\frac{1}{p^{2}}\left(\frac{\mu^{2}}{-p^{2}}\right)^{\epsilon}\left(\frac{m^{2}}{-p^{2}}\right)^{-\epsilon}\left(\frac{1}{\epsilon}+\mathcal{O}(\epsilon)\right)$
\hookrightarrow Contributions are homogeneous functions of the expansion parameter $\frac{m^{2}}{p^{2}}$.

Large-momentum expansion (3)

$$
F=\int \frac{\mathrm{D} k}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}}
$$

Leading-order contributions:

- hard: $F_{0}^{(h)}=\int \frac{\mathrm{D} k}{(k+p)^{2}\left(k^{2}\right)^{2}}=\frac{1}{p^{2}}\left[-\frac{1}{\epsilon}+\ln \left(\frac{-p^{2}}{\mu^{2}}\right)\right]+\mathcal{O}(\epsilon) \rightsquigarrow$ IR-singular!
- soft: $F_{0}^{(s)}=\frac{1}{p^{2}} \int \frac{\mathrm{D} k}{\left(k^{2}-m^{2}\right)^{2}}=\frac{1}{p^{2}}\left[\frac{1}{\epsilon}+\ln \left(\frac{\mu^{2}}{m^{2}}\right)\right]+\mathcal{O}(\epsilon) \rightsquigarrow$ UV-singular!
\hookrightarrow Singularities are cancelled in the sum of all contributions.
\hookrightarrow Exact result is approximated:

$$
F_{0}=F_{0}^{(h)}+F_{0}^{(s)}=\frac{1}{p^{2}} \ln \left(\frac{-p^{2}}{m^{2}}\right)+\mathcal{O}(\epsilon)=F+\mathcal{O}\left(\frac{m^{2}}{\left(p^{2}\right)^{2}}\right)
$$

Large-momentum expansion (4)

$$
F=\int \frac{\mathrm{D} k}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}}
$$

Expansion to all orders in $\frac{m^{2}}{p^{2}}$:

- hard: $\sum_{i} T_{i}^{(h)} \frac{1}{\left(k^{2}-m^{2}\right)^{2}}=\sum_{i=0}^{\infty}(1+i) \frac{\left(m^{2}\right)^{i}}{\left(k^{2}\right)^{2+i}}$

$$
\left[(\alpha)_{n}=\Gamma(\alpha+n) / \Gamma(\alpha)\right]
$$

$$
\begin{aligned}
\hookrightarrow F^{(h)} & =\frac{1}{p^{2}}\left(\frac{\mu^{2}}{-p^{2}}\right)^{\epsilon} \frac{e^{\epsilon \gamma_{E}} \Gamma(1+\epsilon) \Gamma(1-\epsilon) \Gamma(-\epsilon)}{\Gamma(1-2 \epsilon)} \sum_{i=0}^{\infty}\left(\frac{m^{2}}{p^{2}}\right)^{i} \frac{(2 \epsilon)_{i}}{i!} \\
& =\frac{1}{p^{2}}\left[-\frac{1}{\epsilon}+\ln \left(\frac{-p^{2}}{\mu^{2}}\right)+2 \ln \left(1-\frac{m^{2}}{p^{2}}\right)\right]+\mathcal{O}(\epsilon)
\end{aligned}
$$

- soft: $\sum_{j} T_{j}^{(s)} \frac{1}{(k+p)^{2}}=\sum_{j_{1}, j_{2}=0}^{\infty} \frac{\left(j_{1}+j_{2}\right)!}{j_{1}!j_{2}!} \frac{(-2 k \cdot p)^{j_{1}}\left(-k^{2}\right)^{j_{2}}}{\left(p^{2}\right)^{1+j_{1}+j_{2}}}$

$$
\begin{aligned}
\hookrightarrow F^{(s)} & =\frac{1}{p^{2}}\left(\frac{\mu^{2}}{m^{2}}\right)^{\epsilon} e^{\epsilon \gamma_{E}} \Gamma(\epsilon) \sum_{j=0}^{\infty}\left(\frac{m^{2}}{p^{2}}\right)^{j} \frac{(\epsilon)_{j}}{(1-\epsilon)_{j}} \\
& =\frac{1}{p^{2}}\left[\frac{1}{\epsilon}+\ln \left(\frac{\mu^{2}}{m^{2}}\right)-\ln \left(1-\frac{m^{2}}{p^{2}}\right)\right]+\mathcal{O}(\epsilon)
\end{aligned}
$$

Full result F exactly reproduced:

$$
F=F^{(h)}+F^{(s)}=\frac{1}{p^{2}}\left[\ln \left(\frac{-p^{2}}{m^{2}}\right)+\ln \left(1-\frac{m^{2}}{p^{2}}\right)\right]+\mathcal{O}(\epsilon)
$$

Questions: Why does this expansion by regions work?

- What ensures the cancellation of singularities? (IR $\leftrightarrow \mathrm{UV}$!)
- Didn't we double-count every $k \in \mathbb{R}^{d}$ when replacing (for the leading order) $\int \mathrm{D} k \rightarrow \int \mathrm{D} k T_{0}^{(h)}+\int \mathrm{D} k T_{0}^{(s)} ?$
- How do we have to choose the regions?

And how do we know that the chosen set of regions is complete?

- What is the role of scaleless integrals?

The expansion by regions has been applied successfully to many complicated loop integrals.

"Real-life" example

2-loop vertex integral in the high-energy limit
Denner, B.J., Pozzorini '08
$Q^{2} \gg m_{t}^{2} \sim M_{W, Z}^{2}$
$\hookrightarrow 9$ relevant regions: [labelled " $\left(k_{1}-k_{2}\right)$ "]
$(h-h),(1 c-h),(h-2 c)$,

$(1 c-1 c),(1 c-2 c),(2 c-2 c)$,
$(1 c-2 u c),(2 u c-2 u c),(u s-2 c)$

- next-to-leading-logarithmic result obtained:
$\alpha^{2}\left\{L^{3}, L^{2} / \epsilon, L / \epsilon^{2}, 1 / \epsilon^{3}\right\}$, where $L=\ln \left(Q^{2} / M_{W}^{2}\right)$
- cross-checked with independent calculation based on sector decomposition

Practical note: how to find the relevant regions

- Look where the propagators have poles:
\star Large-momentum example: $(k+p)^{2}=0$ at $k \sim p, \quad k^{2}-m^{2}=0$ at $k \sim m$.
\star Close the integration contour of one component (e.g. $k^{0}, k^{ \pm}$). For all residues investigate the scaling of the components.
- Use Mellin-Barnes (MB) representations:

$$
\frac{1}{(A+B)^{n}}=\frac{1}{\Gamma(n)} \int_{-i \infty}^{i \infty} \frac{\mathrm{~d} z}{2 i \pi} \Gamma(n+z) \Gamma(-z) \frac{B^{z}}{A^{n+z}}
$$

1. Evaluate the full (scalar) integral for generic propagator powers n_{i} in terms of multiple MB integrals.
2. Close MB contours involving the expansion parameter and extract the leading contributions.
3. The individual terms can be identified with corresponding regions by their homogeneous scaling with the expansion parameter depending on d and n_{i}.
[A subsequent expansion by regions often yields simpler expressions for the contributions.]

Practical note: how to find the relevant regions (2)

- Try all possible regions that you can imagine ... If a region does not contribute, its integrals are scaleless.
- Automated by Mathematica code asy.m, Pak, A. Smirnov, Eur. Phys. J. C 71 (2011) 1626 finds non-scaleless contributions automatically via geometric approach:

$$
\text { AlphaRepExpand }\left[\{k\},\left\{(k+p)^{\wedge} 2, k^{\wedge} 2-m^{\wedge} 2\right\},\left\{p^{\wedge} 2->1\right\},\left\{m^{\wedge} 2->x\right\}\right]
$$

Expansion based on Feynman-parameter integral \rightsquigarrow result: list of regions with scalings of Feynman parameters in powers of the expansion parameter Published version of asy.m: potential \& Glauber regions not found \hookrightarrow update available soon

- When a region is missing, the total result is often (but not always) more singular than it should be. \rightsquigarrow Important cross-check, but no guarantee!

Overview

I The strategy of regions

- asymptotic expansion of loop integrals
- introduction to the expansion by regions
- example: large-momentum expansion

II Why does the method work?

- transforming original integral \rightarrow series of expanded integrals
- overlap contribution

III Examples

- threshold expansion for heavy-particle pair production
- Sudakov form factor (\rightsquigarrow non-commuting expansions)

IV The general formalism

- conditions on regions \& expansions
- general identity with overlap contributions
- example: forward scattering with small momentum exchange

V Summary

II Why does the method work?

Idea based on a 1-dimensional toy example from M. Beneke (1997) [see also: Smirnov, Applied Asymptotic Expansions In Momenta And Masses]

Large-momentum example

Let us show step by step how the expansions reproduce the full result.

The expansions $\sum_{i} T_{i}^{(h)}, \sum_{j} T_{j}^{(s)}$ converge absolutely within domains D_{h}, D_{s} :
(h): $\frac{1}{\left(k^{2}-m^{2}\right)^{2}}=\sum_{i} T_{i}^{(h)} \frac{1}{\left(k^{2}-m^{2}\right)^{2}}$ within $D_{h}=\left\{k \in \mathbb{R}^{d}:\left|k^{2}\right| \geq \Lambda^{2}\right\}$,
(s): $\frac{1}{(k+p)^{2}}=\sum_{j} T_{j}^{(s)} \frac{1}{(k+p)^{2}}$ within $D_{s}=\left\{k \in \mathbb{R}^{d}:\left|k^{2}\right|<\Lambda^{2}\right\}$, with $m^{2} \ll \Lambda^{2} \ll\left|p^{2}\right| \rightsquigarrow D_{h} \cup D_{s}=\mathbb{R}^{d}, D_{h} \cap D_{s}=\emptyset$.

The expansions commute with integrals restricted to the corresponding domains:
$\int_{k \in D_{h}} \mathrm{D} k \underbrace{\frac{1}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}}}_{I}=\sum_{i} \int_{k \in D_{h}} \mathrm{D} k T_{i}^{(h)} I, \quad \int_{k \in D_{s}} \mathrm{D} k I=\sum_{j} \int_{k \in D_{s}} \mathrm{D} k T_{j}^{(s)} I$

Transform the expression for the full integral:

$$
\begin{aligned}
F & =\int_{k \in D_{h}} \mathrm{D} k I+\int_{k \in D_{s}} \mathrm{D} k I=\sum_{i} \int_{k \in D_{h}} \mathrm{D} k T_{i}^{(h)} I+\sum_{j} \int_{k \in D_{s}} \mathrm{D} k T_{j}^{(s)} I \\
& =\sum_{i}\left(\int_{k \in \mathbb{R}^{d}} \mathrm{D} k T_{i}^{(h)} I-\sum_{j} \int_{k \in D_{s}} \mathrm{D} k T_{j}^{(s)} T_{i}^{(h)} I\right)+\sum_{j}\left(\int_{k \in \mathbb{R}^{d}} \mathrm{D} k T_{j}^{(s)} I-\sum_{i} \int_{k \in D_{h}} \mathrm{D} k T_{i}^{(h)} T_{j}^{(s)} I\right)
\end{aligned}
$$

The expansions commute: $T_{i}^{(h)} T_{j}^{(s)} I=T_{j}^{(s)} T_{i}^{(h)} I \equiv T_{i, j}^{(h, s)} I$
\Rightarrow Identity: $F=\underbrace{\sum_{i} \int \mathrm{D} k T_{i}^{(h)} I}_{\boldsymbol{F}^{(h)}}+\underbrace{\sum_{j} \int \mathrm{D} k T_{j}^{(s)} I}_{\boldsymbol{F}^{(s)}}-\underbrace{\sum_{i, j} \int \mathrm{D} k T_{i, j}^{(h, s)} I}_{\boldsymbol{F}^{(h, s)}}$
All terms are integrated over the whole integration domain \mathbb{R}^{d} as prescribed for the expansion by regions \Rightarrow location of boundary Λ between D_{h}, D_{s} is irrelevant.

Identity: $F=\underbrace{\sum_{i} \int \mathrm{D} k T_{i}^{(h)} I}_{\boldsymbol{F}^{(\boldsymbol{h})}}+\underbrace{\sum_{j} \int \mathrm{D} k T_{j}^{(s)} I}_{\boldsymbol{F}^{(\boldsymbol{s})}}-\underbrace{\sum_{i, j} \int \mathrm{D} k T_{i, j}^{(h, s)} I}_{\boldsymbol{F}^{(\boldsymbol{h}, \boldsymbol{s})}}$

Additional overlap contribution $\boldsymbol{F}^{(h, s)}$?

$$
F^{(h, s)}=\sum_{i=0}^{\infty}(1+i) \sum_{j_{1}, j_{2}=0}^{\infty}(-1)^{j_{2}} \frac{\left(j_{1}+j_{2}\right)!}{j_{1}!j_{2}!} \frac{\left(m^{2}\right)^{i}}{\left(p^{2}\right)^{1+j_{1}+j_{2}}} \int \mathrm{D} k \frac{(-2 k \cdot p)^{j_{1}}}{\left(k^{2}\right)^{2+i-j_{2}}}=0 \quad \text { scaleless! }
$$

Vanishing scaleless integrals \rightsquigarrow property of dimensional regularization and analytic continuation, not ad-hoc requirement of the formalism here!

Both UV- and IR-singularities are regularized dimensionally. Separate singularities:

$$
F^{(h, s)}=\frac{1}{p^{2}}\left(\frac{1}{\epsilon_{\mathrm{UV}}}-\frac{1}{\epsilon_{\mathrm{IR}}}\right)=0
$$

from $\int \frac{\mathrm{D} k}{\left(k^{2}\right)^{2}}=\frac{1}{\epsilon_{\mathrm{UV}}}-\frac{1}{\epsilon_{\mathrm{IR}}} \rightsquigarrow$ cancels corresponding singularities in
$F^{(h)}=\frac{1}{p^{2}}\left(-\frac{1}{\epsilon_{\mathrm{IR}}}+\mathcal{O}\left(\epsilon^{0}\right)\right)$ and $F^{(s)}=\frac{1}{p^{2}}\left(\frac{1}{\epsilon_{\mathrm{UV}}}+\mathcal{O}\left(\epsilon^{0}\right)\right)$.
\hookrightarrow Complete result $F=F^{(h)}+F^{(s)}-F^{(h, s)}$ is separately UV-finite and IR-finite.
$\Rightarrow \boldsymbol{F}=\boldsymbol{F}^{(h)}+\boldsymbol{F}^{(s)}$ as found before.
But now this identity has been obtained without evaluating $F, F^{(h)}, F^{(s)}$!

Overview

I The strategy of regions

- asymptotic expansion of loop integrals
- introduction to the expansion by regions
- example: large-momentum expansion

II Why does the method work?

- transforming original integral \rightarrow series of expanded integrals
- overlap contribution

III Examples

- threshold expansion for heavy-particle pair production
- Sudakov form factor (\rightsquigarrow non-commuting expansions)

IV The general formalism

- conditions on regions \& expansions
- general identity with overlap contributions
- example: forward scattering with small momentum exchange

V Summary

III Examples

Example with 3 regions: threshold expansion for heavy-particle pair production

Regions analyzed in Beneke, Smirnov, NPB 522 (1998) 321
Centre-of-mass system: $\left(q^{\mu}\right)=\left(q_{0}, \overrightarrow{0}\right),\left(p^{\mu}\right)=(0, \vec{p})$
Close to threshold: $q^{2} \approx(2 m)^{2} \Rightarrow q^{2} \gg\left|p^{2}\right|$ or $q_{0} \gg|\vec{p}|$

$$
F=\int \frac{\mathrm{D} k}{\left(k^{2}+q_{0} k_{0}-2 \vec{p} \cdot \vec{k}\right)\left(k^{2}-q_{0} k_{0}-2 \vec{p} \cdot \vec{k}\right) k^{2}}
$$

Relevant regions:

- hard $(h): k_{0},|\vec{k}| \sim q_{0} \Rightarrow$ expand $\sum_{j} T_{j}^{(h)}$ in $D_{h}=\left\{k \in \mathbb{R}^{d}:\left|k_{0}\right| \gg|\vec{p}|\right.$ or $\left.|\vec{k}| \gg|\vec{p}|\right\}$
- $\operatorname{soft}(s): k_{0},|\vec{k}| \sim|\vec{p}| \Rightarrow$ expand $\sum_{j} T_{j}^{(s)}$ in $D_{s}=\left\{k \in \mathbb{R}^{d}:|\vec{k}| \lesssim\left|k_{0}\right| \lesssim|\vec{p}|\right\}$
- potential $(p): k_{0} \sim \frac{\vec{p}^{2}}{q_{0}},|\vec{k}| \sim|\vec{p}| \Rightarrow \sum_{j} T_{j}^{(p)}$ in $D_{p}=\left\{k \in \mathbb{R}^{d}:\left|k_{0}\right| \ll|\vec{k}| \lesssim|\vec{p}|\right\}$
[no explicit boundaries needed]
\hookrightarrow The expansion $T^{(x)} \equiv \sum_{j} T_{j}^{(x)}$ converges for $k \in D_{x}(x=h, s, p)$.
$\hookrightarrow D_{h} \cup D_{s} \cup D_{p}=\mathbb{R}^{d}, \quad D_{h} \cap D_{s}=D_{h} \cap D_{p}=D_{s} \cap D_{p}=\emptyset$
\hookrightarrow The expansions $T^{(h)}, T^{(s)}, T^{(p)}$ commute with each other.

Threshold expansion (2)

Similar transformations as for the large-momentum example yield the following identity:

$$
F=F^{(h)}+\underbrace{F^{(s)}}_{=0}+F^{(p)}-(\underbrace{F^{(h, s)}}_{=0}+\underbrace{F^{(h, p)}}_{=0}+\underbrace{F^{(s, p)}}_{=0})+\underbrace{F^{(h, s, p)}}_{=0 \text { (scaleless) }}
$$

with

$$
\begin{aligned}
& F^{(h)}=-\frac{2 e^{\epsilon \gamma_{E}} \Gamma(\epsilon)}{q^{2}}\left(\frac{4 \mu^{2}}{q^{2}}\right)^{\epsilon} \sum_{j=0}^{\infty}\left(-\frac{4 p^{2}}{q^{2}}\right)^{j} \frac{(1+\epsilon)_{j}}{j!(1+2 \epsilon+2 j)} \\
& F^{(p)}=\frac{e^{\epsilon \gamma_{E}} \Gamma\left(\frac{1}{2}+\epsilon\right) \sqrt{\pi}}{2 \epsilon \sqrt{q^{2}\left(p^{2}-i 0\right)}}\left(\frac{\mu^{2}}{p^{2}-i 0}\right)^{\epsilon} \quad \text { [higher orders vanish] }
\end{aligned}
$$

Exact result reproduced:

$$
F^{(h)}+F^{(p)}=F=\frac{e^{\epsilon \gamma_{E}} \Gamma(\epsilon)}{2 p^{2}}\left(\frac{\mu^{2}}{p^{2}-i 0}\right)^{\epsilon}{ }_{2} F_{1}\left(\frac{1}{2}, 1+\epsilon ; \frac{3}{2} ;-\frac{q^{2}}{4 p^{2}}-i 0\right)
$$

Example with non-commuting expansions: Sudakov form factor

Cannot always choose expansions which commute with each other.

Sudakov limit: $-\left(p_{1}-p_{2}\right)^{2}=Q^{2} \gg m^{2}$

$F=\int \frac{\mathrm{D} k}{\left(k^{+} k^{-}-\vec{k}_{\perp}^{2}+Q k^{+}\right)^{1+\delta}\left(k^{+} k^{-}-\vec{k}_{\perp}^{2}+Q k^{-}\right)^{1-\delta}\left(k^{+} k^{-}-\vec{k}_{\perp}^{2}-m^{2}\right)}$
\hookrightarrow analytic regulator $\delta \rightarrow 0$
[light-cone coordinates: $2 p_{1,2} \cdot k=Q k^{ \pm}, p_{1,2} \cdot k_{\perp}=0$]

Regions \& domains:

- hard $(h): k^{+}, k^{-},\left|\vec{k}_{\perp}\right| \sim Q \Rightarrow D_{h}=\left\{k \in \mathbb{R}^{d}: \vec{k}_{\perp}^{2} \gg m^{2}\right\}$
- 1-collinear (1c): $k^{+} \sim \frac{m^{2}}{Q}, k^{-} \sim Q,\left|\vec{k}_{\perp}\right| \sim m$
- 2-collinear (2c): $k^{+} \sim Q, k^{-} \sim \frac{m^{2}}{Q},\left|\vec{k}_{\perp}\right| \sim m$
- Glauber $(g): k^{+}, k^{-} \sim \frac{m^{2}}{Q},\left|\vec{k}_{\perp}\right| \sim m$
- collinear-plane $(c p): k^{+}, k^{-} \sim Q,\left|\vec{k}_{\perp}\right| \sim m$ \hookrightarrow "artificial" region to ensure $\cup_{x} D_{x}=\mathbb{R}^{d}$
[No soft region needed: $T^{(s)} \equiv T^{(1 c)} T^{(2 c)}$]

Most expansions commute, but $T^{(g)} T^{(c p)} \neq T^{(c p)} T^{(g)}$!

Sudakov form factor (2)

$T^{(g)} T^{(c p)} \neq T^{(c p)} T^{(g)} \rightsquigarrow$ Construct identity avoiding combination of (g) and $(c p)$:

$$
\begin{aligned}
F & =F^{(h)}+F^{(1 c)}+F^{(2 c)}+F^{(g)}+F^{(c p)} \\
& -\left(F^{(h, 1 c)}+F^{(h, 2 c)}+F^{(h, g)}+F^{(h, c p)}+F^{(1 c, 2 c)}+F^{(1 c, g)}+F^{(1 c, c p)}+F^{(2 c, g)}+F^{(2 c, c p)}\right) \\
& +F^{(h, 1 c, 2 c)}+F^{(h, 1 c, g)}+F^{(h, 1 c, c p)}+F^{(h, 2 c, g)}+F^{(h, 2 c, c p)}+F^{(1 c, 2 c, g)}+F^{(1 c, 2 c, c p)} \\
& -\left(F^{(h, 1 c, 2 c, g)}+F^{(h, 1 c, 2 c, c p)}\right)+F_{c p \leftarrow g}^{\mathrm{extra}}+F_{g \leftarrow c p}^{\mathrm{extra}}
\end{aligned}
$$

Usual terms:

- no combination of (g) and ($c p$)
- $F^{(g)}, F^{(c p)}$ and all overlap contributions are scaleless (with analytic regularization)

Extra terms:

- $F_{c p \leftarrow g}^{\text {extra }}$ involves $T^{(c p)} T^{(g)}$ integrated over $k \in D_{c p}$,
- $F_{g \leftarrow c p}^{\text {extra }}$ involves $T^{(g)} T^{(c p)}$ integrated over $k \in D_{g}$,
plus all combinations of $T^{(h)}, T^{(1 c)}, T^{(2 c)}$, with alternating signs.

Sudakov form factor (3)

Both extra terms cancel at the integrand level:

$$
\begin{aligned}
& F_{g \leftarrow c p}^{\mathrm{extra}}= \int_{k \in D_{g}} \mathrm{D} k\left(-1+T^{(h)}+T^{(1 c)}+T^{(2 c)}\right. \\
&\left.\quad-\quad T^{(h, 1 c)}-T^{(h, 2 c)}-T^{(1 c, 2 c)}+T^{(h, 1 c, 2 c)}\right) T^{(g)} T^{(c p)} I \\
&=(-1+3-3+1) \int_{k \in D_{g}} \mathrm{D} k T^{(g)} T^{(c p)} I=0
\end{aligned}
$$

because $T^{(x)} T^{(g)} T^{(c p)}=T^{(g)} T^{(c p)} \forall x \in\{h, 1 c, 2 c\}$.
Similarly: $F_{c p \leftarrow g}^{\mathrm{extra}}=0$.
[The extra terms must cancel \rightsquigarrow otherwise dependence on boundaries of $D_{g}, D_{c p}$.]

Sudakov form factor (4)

Omitting scaleless contributions and vanishing extra terms:

$$
F=F^{(h)}+F^{(1 c)}+F^{(2 c)}
$$

Regions explicitly evaluated to all orders in $\frac{m^{2}}{Q^{2}}$:

$$
\begin{aligned}
F^{(h)}= & -\frac{1}{Q^{2}}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\left\{\frac{1}{\epsilon^{2}}-\frac{2}{\epsilon} \ln \left(1-\frac{m^{2}}{Q^{2}}\right)+\ln ^{2}\left(1-\frac{m^{2}}{Q^{2}}\right)-2 \operatorname{Li}_{2}\left(\frac{m^{2}}{Q^{2}}\right)-\frac{\pi^{2}}{12}\right\} \\
F^{(1 c)}, F^{(2 c)}=- & \frac{1}{2 Q^{2}}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\left\{ \pm \frac{1}{\delta}\left[\frac{1}{\epsilon}+\ln \frac{Q^{2}}{m^{2}}-\ln \left(1-\frac{m^{2}}{Q^{2}}\right)\right]-\frac{1}{\epsilon^{2}}+\frac{2}{\epsilon} \ln \left(1-\frac{m^{2}}{Q^{2}}\right)\right. \\
& \left.+\frac{1}{2} \ln ^{2} \frac{Q^{2}}{m^{2}}+\ln \frac{Q^{2}}{m^{2}} \ln \left(1-\frac{m^{2}}{Q^{2}}\right)-\ln ^{2}\left(1-\frac{m^{2}}{Q^{2}}\right)+\operatorname{Li}_{2}\left(\frac{m^{2}}{Q^{2}}\right)+\frac{5}{12} \pi^{2}\right\}
\end{aligned}
$$

$\hookrightarrow F^{(1 c)}$ and $F^{(2 c)}$ are not separately finite for $\delta \rightarrow 0$, but their sum is.
Compare to exact result:

$$
F=-\frac{1}{Q^{2}}\left\{\frac{1}{2} \ln ^{2} \frac{Q^{2}}{m^{2}}+\ln \frac{Q^{2}}{m^{2}} \ln \left(1-\frac{m^{2}}{Q^{2}}\right)-\operatorname{Li}_{2}\left(\frac{m^{2}}{Q^{2}}\right)+\frac{\pi^{2}}{3}\right\}
$$

Sudakov form factor \rightarrow 5-point integral with Glauber contribution

- collinear propagators "doubled", but expansions equivalent
- same regions \& domains
- "double" propagators \rightsquigarrow Glauber contribution present (even with analytic regularization)
- leading contributions:

$$
\begin{aligned}
F_{0}^{(g)} & \propto \frac{1}{\left(Q^{2}\right)^{3}}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\left(\frac{m^{2}}{Q^{2}}\right)^{-2-\epsilon} \\
F_{0}^{(1 c)}, F_{0}^{(2 c)} & \propto \frac{1}{\left(Q^{2}\right)^{3}}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\left(\frac{m^{2}}{Q^{2}}\right)^{-1-\epsilon} \\
F_{0}^{(h)} & \propto \frac{1}{\left(Q^{2}\right)^{3}}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}
\end{aligned}
$$

Overview

I The strategy of regions

- asymptotic expansion of loop integrals
- introduction to the expansion by regions
- example: large-momentum expansion

II Why does the method work?

- transforming original integral \rightarrow series of expanded integrals
- overlap contribution

III Examples

- threshold expansion for heavy-particle pair production
- Sudakov form factor (\rightsquigarrow non-commuting expansions)

IV The general formalism

- conditions on regions \& expansions
- general identity with overlap contributions
- example: forward scattering with small momentum exchange

IV The general formalism

Identities as in the previous examples are generally valid, under some conditions.

Consider

- a (multiple) integral $F=\int \mathrm{D} k I$ over the domain D (e.g. $D=\mathbb{R}^{d}$),
- a set of N regions $R=\left\{x_{1}, \ldots, x_{N}\right\}$,
- for each region $x \in R$ an expansion $T^{(x)}=\sum_{j} T_{j}^{(x)}$ which converges absolutely in the domain $D_{x} \subset D$.

Conditions

- $\bigcup_{x \in R} D_{x}=D, \quad D_{x} \cap D_{x^{\prime}}=\emptyset \forall x \neq x^{\prime}$.
- Some of the expansions commute with each other.

Let $R_{\mathrm{c}}=\left\{x_{1}, \ldots, x_{N_{\mathrm{c}}}\right\}$ and $R_{\mathrm{nc}}=\left\{x_{N_{\mathrm{c}}+1}, \ldots, x_{N}\right\}$ with $1 \leq N_{\mathrm{c}} \leq N$.
Then: $T^{(x)} T^{\left(x^{\prime}\right)}=T^{\left(x^{\prime}\right)} T^{(x)} \equiv T^{\left(x, x^{\prime}\right)} \forall x \in R_{\mathrm{c}}, x^{\prime} \in R$.

- Every pair of non-commuting expansions is invariant under some expansion from R_{c} : $\forall x_{1}^{\prime}, x_{2}^{\prime} \in R_{\mathrm{nc}}, x_{1}^{\prime} \neq x_{2}^{\prime}, \exists x \in R_{\mathrm{c}}: T^{(x)} T^{\left(x_{2}^{\prime}\right)} T^{\left(x_{1}^{\prime}\right)}=T^{\left(x_{2}^{\prime}\right)} T^{\left(x_{1}^{\prime}\right)}$.
- \exists regularization for singularities, e.g. dimensional (+ analytic) regularization. \hookrightarrow All expanded integrals and series expansions in the formalism are well-defined.

The general formalism (2)

Under these conditions, the following identity holds: $\quad\left[F^{(x, \ldots)} \equiv \sum_{j, \ldots} \int \mathrm{D} k T_{j, \ldots}^{(x, \ldots)} I\right]$

$$
F=\sum_{x \in R} F^{(x)}-\sum_{\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\} \subset R}^{\left\langle R_{\mathrm{c}}+1\right\rangle} F^{\left(x_{1}^{\prime}, x_{2}^{\prime}\right)}+\ldots-(-1)^{n} \sum_{\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\} \subset R}^{\left\langle R_{\mathrm{c}}+1\right\rangle} F^{\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)}+\ldots+(-1)^{N_{\mathrm{c}}} \sum_{x^{\prime} \in R_{\mathrm{nc}}} F^{\left(x^{\prime}, x_{1}, \ldots, x_{N_{\mathrm{c}}}\right)}
$$

where the sums run over subsets $\left\{x_{1}^{\prime}, \ldots\right\}$ containing at most one region from R_{nc}.

Comments

- This identity is exact when the expansions are summed to all orders.

Leading-order approximation for $F \rightsquigarrow$ dropping higher-order terms.

- It is independent of the regularization (dim. reg., analytic reg., cut-off, infinitesimal masses/off-shellness, ...) as long as all individual terms are well-defined.
- Usually regions \& regularization are chosen such that multiple expansions $F^{\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)}(n \geq 2)$ are scaleless and vanish. [\checkmark if each $F_{0}^{(x)}$ is a homogeneous function of the expansion parameter with unique scaling.]
- If $\exists F^{\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots\right)} \neq 0 \rightsquigarrow$ relevant overlap contributions (\rightarrow "zero-bin subtractions"). They appear e.g. when avoiding analytic regularization in SCET.

Example with relevant overlap contributions:

 forward scattering with small momentum exchange

Two light-like particles with large centre-of-mass energy exchange a small momentum r :
$p_{1}^{2}=\left(p_{1}-r\right)^{2}=p_{2}^{2}=\left(p_{2}+r\right)^{2}=0$

$\left(p_{1}+p_{2}\right)^{2}=Q^{2} \gg \vec{r}_{\perp}^{2}, \quad r^{ \pm} \approx \mp \frac{\vec{r}_{\perp}^{2}}{Q}$
Symmetrize integral under $k \leftrightarrow r-k$
\hookrightarrow avoids divergences at $\left|k^{ \pm}\right| \rightarrow \infty$ under expansion.

$$
\begin{aligned}
F & =\frac{1}{2} \int \frac{\mathrm{D} k}{k^{2}(r-k)^{2}}\left(\frac{1}{\left(\left(p_{1}-k\right)^{2}\right)^{1+\delta}}+\frac{1}{\left(\left(p_{1}-r+k\right)^{2}\right)^{1+\delta}}\right) \\
& \times\left(\frac{1}{\left(\left(p_{2}+k\right)^{2}\right)^{1-\delta}}+\frac{1}{\left(\left(p_{2}+r-k\right)^{2}\right)^{1-\delta}}\right)
\end{aligned}
$$

Regions: same as for Sudakov form factor (scaling with $m \rightarrow\left|\vec{r}_{\perp}\right|$),
Domains: similar (but more involved for $\left|\vec{k}_{\perp}\right| \gg\left|\vec{r}_{\perp}\right|$)

Forward scattering (2)

Same identity as for Sudakov form factor:

$$
\begin{aligned}
F & =F^{(h)}+F^{(1 c)}+F^{(2 c)}+F^{(g)}+F^{(c p)} \\
& -\left(F^{(h, 1 c)}+F^{(h, 2 c)}+F^{(h, g)}+F^{(h, c p)}+F^{(1 c, 2 c)}+F^{(1 c, g)}+F^{(1 c, c p)}+F^{(2 c, g)}+F^{(2 c, c p)}\right) \\
& +F^{(h, 1 c, 2 c)}+F^{(h, 1 c, g)}+F^{(h, 1 c, c p)}+F^{(h, 2 c, g)}+F^{(h, 2 c, c p)}+F^{(1 c, 2 c, g)}+F^{(1 c, 2 c, c p)} \\
& -\left(F^{(h, 1 c, 2 c, g)}+F^{(h, 1 c, 2 c, c p)}\right)
\end{aligned}
$$

With analytic regulator $\boldsymbol{\delta} \rightarrow \mathbf{0}: \quad F_{0}=F_{0}^{(1 c)}+F_{0}^{(2 c)} \quad\left[F_{0}^{(h)}\right.$ suppressed, others scaleless]

$$
F_{0}^{(1 c)}=F_{0}^{(2 c)}=\frac{1}{2} \frac{i \pi}{Q^{2} \vec{r}_{\perp}^{2}}\left(\frac{\mu^{2}}{\vec{r}_{\perp}^{2}}\right)^{\epsilon} \frac{e^{\epsilon \gamma_{E}} \Gamma(1+\epsilon) \Gamma^{2}(-\epsilon)}{\Gamma(-2 \epsilon)}
$$

Without analytic regularization $(\delta=0)$:
[all terms are still well-defined]

$$
\begin{gathered}
F_{0}=F_{0}^{(1 c)}+F_{0}^{(2 c)}+F_{0}^{(g)}-\left(F_{0}^{(1 c, 2 c)}+F_{0}^{(1 c, g)}+F_{0}^{(2 c, g)}\right)+F_{0}^{(1 c, 2 c, g)} \\
F_{0}^{(x, \ldots)}=\frac{i \pi}{Q^{2} \vec{r}_{\perp}^{2}}\left(\frac{\mu^{2}}{\vec{r}_{\perp}^{2}}\right)^{\epsilon} \frac{e^{\epsilon \gamma_{E}} \Gamma(1+\epsilon) \Gamma^{2}(-\epsilon)}{\Gamma(-2 \epsilon)} \quad \forall\{x, \ldots\} \subset\{1 c, 2 c, g\}
\end{gathered}
$$

\hookrightarrow consistent results independent of regularization: $\frac{1}{2}+\frac{1}{2}=1+1+1-(1+1+1)+1 \checkmark$
\hookrightarrow agreement with leading-order expansion of full result

Overview

I The strategy of regions

- asymptotic expansion of loop integrals
- introduction to the expansion by regions
- example: large-momentum expansion

II Why does the method work?

- transforming original integral \rightarrow series of expanded integrals
- overlap contribution

III Examples

- threshold expansion for heavy-particle pair production
- Sudakov form factor (\rightsquigarrow non-commuting expansions)

IV The general formalism

- conditions on regions \& expansions
- general identity with overlap contributions
- example: forward scattering with small momentum exchange

V Summary

V Summary

Expansion by regions for general integrals

- Conditions for regions (+ corresponding expansions \& domains) established.
- Identity proven \rightsquigarrow relates exact integral to sum of expanded terms:

$$
F=\sum_{x \in R} F^{(x)}-\sum_{\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\} \subset R}^{\left\langle R_{\mathrm{c}}+1\right\rangle} F^{\left(x_{1}^{\prime}, x_{2}^{\prime}\right)}+\ldots-(-1)^{\left\langle R_{\mathrm{c}}+1\right\rangle} \sum_{\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\} \subset R}^{\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)}+\ldots+(-1)^{N_{\mathrm{c}}} \sum_{x^{\prime} \in R_{\mathrm{nc}}} F^{\left(x^{\prime}, x_{1}, \ldots, x_{N_{\mathrm{c}}}\right)}
$$

\hookrightarrow valid independent of the choice of regularization

- This identity includes overlap contributions with multiple expansions
\hookrightarrow can be scaleless \rightsquigarrow known recipe for expansion by regions \checkmark or relevant (depending on regularization)
\hookrightarrow generalization of known recipe.

Application to example integrals

- setup of the regions, expansions \& convergence domains,
- check of conditions,
- evaluation of expanded integrals,
- comparison to exact result.

