Expansion by regions:
 foundation, generalization and automated search for regions

Bernd Jantzen
RWTH Aachen University
I The strategy of expansion by regions
II Why does the method work?
III The general formalism
IV Automated search for regions with asy2.m
V Summary

Based on:
II-III B.J., JHEP 12 (2011) 076, arXiv:1111.2589
IV B.J., A. Smirnov, V. Smirnov, arXiv:1206.0546 \rightsquigarrow Eur. Phys. J. C 72 (2012) 2139

I The strategy of expansion by regions

Starting point: (multi-)loop integral (or other complicated integral)

$$
\begin{aligned}
F & =\int \mathrm{d}^{d} k_{1} \int \mathrm{~d}^{d} k_{2} \cdots I \\
I & =\frac{1}{\left(k_{1}+p_{1}\right)^{2}-m_{1}^{2}} \frac{1}{\left(k_{1}+k_{2}+p_{2}\right)^{2}-m_{2}^{2}} \cdots
\end{aligned}
$$

- complicated function of internal masses m_{i} and kinematical parameters $p_{i}^{2}, p_{i} \cdot p_{j}$
- exact evaluation often hard or impossible

Exploit parameter hierarchies, e.g. large energies $Q \gg$ small masses m :

- expand integral in small ratios $\frac{m^{2}}{Q^{2}}: F=F_{0}+\frac{m^{2}}{Q^{2}} F_{1}+\left(\frac{m^{2}}{Q^{2}}\right)^{2} F_{2}+\ldots$
- simplification achieved if expansion of integrand before integration:

$$
I \rightarrow I_{0}+\frac{m^{2}}{Q^{2}} I_{1}+\left(\frac{m^{2}}{Q^{2}}\right)^{2} I_{2}+\ldots, \quad F_{j}=\int \mathrm{d}^{d} k_{1} \int \mathrm{~d}^{d} k_{2} \cdots I_{j}
$$

- expanded integrands I_{j} often simpler to integrate than original integrand I

Expansion of integrand before integration?

$$
I \rightarrow I_{0}+\frac{m^{2}}{Q^{2}} I_{1}+\left(\frac{m^{2}}{Q^{2}}\right)^{2} I_{2}+\ldots, \quad F_{j}=\int \mathrm{d}^{d} k_{1} \int \mathrm{~d}^{d} k_{2} \cdots I_{j}
$$

But:

* integrand I is function of loop momenta: $I=I\left(k_{1}, k_{2}, \ldots\right)$
\star loop-momentum components k_{i}^{μ} can take any values (large, small, mixed, ...)
\star expansions of integrand may break down for certain values of k_{1}, k_{2}, \ldots
* naive integrations of expanded integrand may generate new singularities
\hookrightarrow Need sophisticated methods of asymptotic expansions.

Simple example: large-momentum expansion

$$
F=\int \frac{\mathrm{D} k}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}}
$$

$$
\left[\begin{array}{rl}
\int \mathrm{D} k & \equiv \frac{\mu^{2 \epsilon} e^{\epsilon \gamma_{E}}}{i \pi^{d / 2}} \int \mathrm{~d}^{d} k \\
d & =4-2 \epsilon
\end{array}\right]
$$

Large momentum $\left|p^{2}\right| \gg m^{2} \rightsquigarrow$ expand in $\frac{m^{2}}{p^{2}}$.
Integral is UV- and IR-finite, the exact result is known:

$$
\left[p^{2} \rightarrow p^{2}+i 0\right]
$$

$$
\begin{aligned}
F & =\frac{1}{p^{2}}\left[\ln \left(\frac{-p^{2}}{m^{2}}\right)+\ln \left(1-\frac{m^{2}}{p^{2}}\right)\right]+\mathcal{O}(\epsilon) \\
& \xrightarrow[\text { expand }]{ } \frac{1}{p^{2}}\left[\ln \left(\frac{-p^{2}}{m^{2}}\right)-\sum_{j=1}^{\infty} \frac{1}{j}\left(\frac{m^{2}}{p^{2}}\right)^{j}\right]+\mathcal{O}(\epsilon)
\end{aligned}
$$

Now assume that we could not calculate this integral exactly ...

Large-momentum expansion (2)

Large momentum $\left|p^{2}\right| \gg m^{2}$

$$
F=\int \frac{\mathrm{D} k}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}}
$$

\hookrightarrow expand integrand before integration:

Expansion by regions

\hookrightarrow here 2 relevant regions:
Beneke, V. Smirnov, Nucl. Phys. B 522 (1998) 321

- hard $(h): k \sim p \Rightarrow \frac{1}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}} \rightarrow \frac{1}{(k+p)^{2}}\left(\frac{1}{\left(k^{2}\right)^{2}}+\frac{2 m^{2}}{\left(k^{2}\right)^{3}}+\ldots\right)$
- $\operatorname{soft}(s): k \sim m \Rightarrow \frac{1}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}} \rightarrow \frac{1}{\left(k^{2}-m^{2}\right)^{2}}\left(\frac{1}{p^{2}}-\frac{2 k \cdot p}{\left(p^{2}\right)^{2}}-\frac{k^{2}}{\left(p^{2}\right)^{2}}+\ldots\right)$
\Rightarrow Integrate each expanded term over the whole integration domain.
\Rightarrow Set scaleless integrals to zero (like in dimensional regularization).

Leading-order contributions:

- hard: $F_{0}^{(h)}=\int \frac{\mathrm{D} k}{(k+p)^{2}\left(k^{2}\right)^{2}}=\frac{1}{p^{2}}\left(\frac{\mu^{2}}{-p^{2}}\right)^{\epsilon}\left(-\frac{1}{\epsilon}+\mathcal{O}(\epsilon)\right)$
- $\boldsymbol{\operatorname { s o f t }}: F_{0}^{(s)}=\int \frac{\mathrm{D} k}{p^{2}\left(k^{2}-m^{2}\right)^{2}}=\frac{1}{p^{2}}\left(\frac{\mu^{2}}{-p^{2}}\right)^{\epsilon}\left(\frac{m^{2}}{-p^{2}}\right)^{-\epsilon}\left(\frac{1}{\epsilon}+\mathcal{O}(\epsilon)\right)$
\hookrightarrow Contributions are homogeneous functions of the expansion parameter $\frac{m^{2}}{p^{2}}$.

Large-momentum expansion (3)

$$
F=\int \frac{\mathrm{D} k}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}}
$$

Leading-order contributions:

- hard: $F_{0}^{(h)}=\int \frac{\mathrm{D} k}{(k+p)^{2}\left(k^{2}\right)^{2}}=\frac{1}{p^{2}}\left[-\frac{1}{\epsilon}+\ln \left(\frac{-p^{2}}{\mu^{2}}\right)\right]+\mathcal{O}(\epsilon) \rightsquigarrow$ IR-singular!
- soft: $F_{0}^{(s)}=\frac{1}{p^{2}} \int \frac{\mathrm{D} k}{\left(k^{2}-m^{2}\right)^{2}}=\frac{1}{p^{2}}\left[\frac{1}{\epsilon}+\ln \left(\frac{\mu^{2}}{m^{2}}\right)\right]+\mathcal{O}(\epsilon) \rightsquigarrow$ UV-singular!
\hookrightarrow Singularities are cancelled in the sum of all contributions.
\hookrightarrow Exact result is approximated:

$$
F_{0}=F_{0}^{(h)}+F_{0}^{(s)}=\frac{1}{p^{2}} \ln \left(\frac{-p^{2}}{m^{2}}\right)+\mathcal{O}(\epsilon)=F+\mathcal{O}\left(\frac{m^{2}}{\left(p^{2}\right)^{2}}\right)
$$

Hard \& soft expansions to all orders in $\frac{m^{2}}{p^{2}} \rightsquigarrow$ exact result F reproduced \checkmark

Expansion by regions: successfully applied to many complicated loop integrals

But: Why does it work?

- What ensures the cancellation of singularities? (IR $\leftrightarrow \mathrm{UV}$!)
- Didn't we double-count every part of the integration domain when replacing $\int \mathrm{D} k I \rightarrow \int \mathrm{D} k I_{0}^{(h)}+\int \mathrm{D} k I_{0}^{(s)} ?$
- How do we have to choose the regions?

And how do we know that the chosen set of regions is complete?

- What is the role of scaleless integrals?

II Why does the method work?

> Idea based on a 1-dimensional toy example from M. Beneke (1997)
> [see also: V. Smirnov, Applied Asymptotic Expansions In Momenta And Masses]

Large-momentum example

Let us show step by step how the expansions reproduce the full result.

The hard \& soft expansions converge absolutely within domains D_{h}, D_{s} :
(h): $\frac{1}{\left(k^{2}-m^{2}\right)^{2}}=\sum_{i} T_{i}^{(h)} \frac{1}{\left(k^{2}-m^{2}\right)^{2}}$ within $D_{h}=\left\{k \in \mathbb{R}^{d}:\left|k^{2}\right| \geq \Lambda^{2}\right\}$,
(s): $\frac{1}{(k+p)^{2}}=\sum_{j} T_{j}^{(s)} \frac{1}{(k+p)^{2}}$ within $D_{s}=\left\{k \in \mathbb{R}^{d}:\left|k^{2}\right|<\Lambda^{2}\right\}$,
with $m^{2} \ll \Lambda^{2} \ll\left|p^{2}\right| \rightsquigarrow D_{h} \cup D_{s}=\mathbb{R}^{d} \quad\left[D_{h} \cap D_{s}=\emptyset\right]$.
The expansions commute with integrals restricted to the corresponding domains:
$\int_{k \in D_{h}} \mathrm{D} k \underbrace{\frac{1}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}}}_{I}=\sum_{i} \int_{k \in D_{h}} \mathrm{D} k T_{i}^{(h)} I, \quad \int_{k \in D_{s}} \mathrm{D} k I=\sum_{j} \int_{k \in D_{s}} \mathrm{D} k T_{j}^{(s)} I$

Transform the expression for the full integral:

$$
\begin{aligned}
F & =\int_{k \in D_{h}} \mathrm{D} k I+\int_{k \in D_{s}} \mathrm{D} k I=\sum_{i} \int_{k \in D_{h}} \mathrm{D} k T_{i}^{(h)} I+\sum_{j} \int_{k \in D_{s}} \mathrm{D} k T_{j}^{(s)} I \\
& =\sum_{i}\left(\int_{k \in \mathbb{R}^{d}} \mathrm{D} k T_{i}^{(h)} I-\sum_{j} \int_{k \in D_{s}} \mathrm{D} k T_{j}^{(s)} T_{i}^{(h)} I\right)+\sum_{j}\left(\int_{k \in \mathbb{R}^{d}} \mathrm{D} k T_{j}^{(s)} I-\sum_{i} \int_{k \in D_{h}} \mathrm{D} k T_{i}^{(h)} T_{j}^{(s)} I\right)
\end{aligned}
$$

The expansions commute: $T_{i}^{(h)} T_{j}^{(s)} I=T_{j}^{(s)} T_{i}^{(h)} I \equiv T_{i, j}^{(h, s)} I$
\Rightarrow Identity: $F=\underbrace{\sum_{i} \int \mathrm{D} k T_{i}^{(h)} I}_{\boldsymbol{F}^{(\boldsymbol{h})}}+\underbrace{\sum_{j} \int \mathrm{D} k T_{j}^{(s)} I}_{\boldsymbol{F}^{(\boldsymbol{s})}}-\underbrace{\sum_{i, j} \int \mathrm{D} k T_{i, j}^{(h, s)} I}_{\boldsymbol{F}^{(\boldsymbol{h}, \boldsymbol{s})}}$
All terms are integrated over the whole integration domain \mathbb{R}^{d} as prescribed for the expansion by regions \Rightarrow location of boundary Λ between D_{h}, D_{s} is irrelevant.

Identity: $F=\underbrace{\sum_{i} \int \mathrm{D} k T_{i}^{(h)} I}_{\boldsymbol{F}^{(h)}}+\underbrace{\sum_{j} \int \mathrm{D} k T_{j}^{(s)} I}_{\boldsymbol{F}^{(s)}}-\underbrace{\sum_{i, j} \int \mathrm{D} k T_{i, j}^{(h, s)} I}_{\boldsymbol{F}^{(\boldsymbol{h}, \boldsymbol{s})}}$

Additional overlap contribution $\boldsymbol{F}^{(h, s)}$?

$$
F^{(h, s)}=\sum_{i=0}^{\infty}(1+i) \sum_{j_{1}, j_{2}=0}^{\infty}(-1)^{j_{2}} \frac{\left(j_{1}+j_{2}\right)!}{j_{1}!j_{2}!} \frac{\left(m^{2}\right)^{i}}{\left(p^{2}\right)^{1+j_{1}+j_{2}}} \int \mathrm{D} k \frac{(-2 k \cdot p)^{j_{1}}}{\left(k^{2}\right)^{2+i-j_{2}}}=0 \quad \text { scaleless! }
$$

Vanishing scaleless integrals \rightsquigarrow property of dimensional regularization and analytic continuation, not ad-hoc requirement of the formalism here!

Both UV- and IR-singularities are regularized dimensionally. Separate singularities:

$$
F^{(h, s)}=\frac{1}{p^{2}}\left(\frac{1}{\epsilon_{\mathrm{UV}}}-\frac{1}{\epsilon_{\mathrm{IR}}}\right)=0
$$

\rightsquigarrow cancels corresponding singularities in $F^{(h)}=\frac{1}{p^{2}}\left(-\frac{1}{\epsilon_{\mathrm{IR}}}+\mathcal{O}\left(\epsilon^{0}\right)\right)$ and $F^{(s)}=\frac{1}{p^{2}}\left(\frac{1}{\epsilon_{\mathrm{UV}}}+\mathcal{O}\left(\epsilon^{0}\right)\right)$.
\hookrightarrow Complete result $F=F^{(h)}+F^{(s)}-F^{(h, s)}$ is separately UV-finite and IR-finite.
$\Rightarrow \boldsymbol{F}=\boldsymbol{F}^{(\boldsymbol{h})}+\boldsymbol{F}^{(s)}$ as used before.
But now this identity has been obtained without evaluating the contributions!

More 1-loop examples

similar transformations applied \rightsquigarrow similar identities obtained

- Threshold expansion for heavy-particle pair production
$\hookrightarrow 3$ regions with commuting expansions

- Sudakov form factor
$\hookrightarrow 5$ regions, 2 non-commuting expansions
- Forward scattering with small momentum exchange \hookrightarrow overlap contributions eventually relevant

Non-commuting expansions: $T^{\left(x_{1}\right)} T^{\left(x_{2}\right)} \neq T^{\left(x_{2}\right)} T^{\left(x_{1}\right)}$
What changes if (some) expansions do not commute with each other?
\hookrightarrow identity with combinations only of commuting expansions.
\hookrightarrow extra terms involving pairs of non-commuting expansions, e.g.

$$
-\int_{k \in D_{x_{2}}} \mathrm{D} k\left(T^{\left(x_{2}\right)} T^{\left(x_{1}\right)}-T^{(x)} T^{\left(x_{2}\right)} T^{\left(x_{1}\right)}+\ldots\right) I
$$

\Rightarrow extra terms cancel at integrand level if
\exists commuting expansion $T^{(x)}$ such that $T^{(x)} T^{\left(x_{2}\right)} T^{\left(x_{1}\right)}=T^{\left(x_{2}\right)} T^{\left(x_{1}\right)}$
This condition can usually be fulfilled.
\hookrightarrow no extra terms!

Example with relevant overlap contributions:

 forward scattering with small momentum exchange
\hookrightarrow General identity with 5 regions + overlap contributions.
\hookrightarrow Evaluation of terms depends on regularization scheme:
 [restricting to leading order F_{0}]

- Without analytic regularization:

$$
\begin{aligned}
F_{0}= & \overbrace{F_{0}^{(1 c)}+F_{0}^{(2 c)}+F_{0}^{(g)}}^{\text {single expansions }} \\
& \underbrace{-\left(F_{0}^{(1 c, 2 c)}+F_{0}^{(1 c, g)}+F_{0}^{(2 c, g)}\right)+F_{0}^{(1 c, 2 c, g)}}_{\text {relevant overlap contributions }}
\end{aligned}
$$

- With analytic regularization: $F_{0}=F_{0}^{(1 c)}+F_{0}^{(2 c)}$
 other terms scaleless
\hookrightarrow Individual terms differ, but complete result agrees.

III The general formalism

Consider

- a (multiple) integral F over the domain D,
- a set of regions x_{1}, \ldots, x_{N},
- for each region x an expansion $T^{(x)}$ converging in the subdomain D_{x}.

Conditions

- The convergence domains D_{x} cover the integration domain D.
- If some expansions do not commute with each other:

Every pair $T^{\left(x_{2}\right)}, T^{\left(x_{1}\right)}$ of non-commuting expansions is invariant under a commuting expansion $T^{(x)}$: $\quad T^{(x)} T^{\left(x_{2}\right)} T^{\left(x_{1}\right)}=T^{\left(x_{2}\right)} T^{\left(x_{1}\right)}$

- All expanded integrals and series expansions are well-defined $\rightsquigarrow \exists$ regularization.
\hookrightarrow The following identity holds:

$$
F=\left\{\begin{array}{c}
\text { single } \\
\text { expansions }
\end{array}\right\}-\left\{\begin{array}{c}
\text { double } \\
\text { expansions }
\end{array}\right\}+\left\{\begin{array}{c}
\text { triple } \\
\text { expansions }
\end{array}\right\}-\ldots
$$

where only those expansions are combined which commute with each other.

The general formalism (2)

$$
F=\left\{\begin{array}{c}
\text { single } \\
\text { expansions }
\end{array}\right\} \underbrace{-\left\{\begin{array}{c}
\text { double } \\
\text { expansions }
\end{array}\right\}+\left\{\begin{array}{c}
\text { triple } \\
\text { expansions }
\end{array}\right\}-\ldots}_{\text {overlap contributions }}
$$

with those combinations of expansions which commute with each other

Comments

- Identity is exact when expansions are summed to all orders.

Want leading-order approximation? \rightsquigarrow drop higher-order terms.

- Identity is independent of regularization.
\hookrightarrow Individual terms change with regularization, but complete result invariant.
- Overlap contributions (\rightarrow "zero-bin subtractions") may be relevant.
[e.g. when avoiding analytic regularization in SCET]
e.g. Manohar, Stewart '06; Chiu, Fuhrer, Hoang, Kelley, Manohar '09;
- With usual choice of regions \& regularization
\hookrightarrow overlap contributions are scaleless and vanish.
[\checkmark if single expansions yield homogeneous functions of expansion parameter with unique scalings.]

IV Automated search for regions with asy2.m

Now we have a proof for the correctness of the method under certain conditions, but:

How can we find the relevant regions?

\hookrightarrow Try all possible regions \rightsquigarrow irrelevant contributions are scaleless.
Automated by Mathematica code asy.m:

```
AlphaRepExpand[{loop momenta}, {list of denominators},
    {replacements for kinematic invariants}, {scaling of parameters}]
```

- Expansion at level of Feynman-parameter integrals.
- Uses geometric interpretation of integral (details \rightsquigarrow paper).
- Detects non-scaleless contributions.
- Works well, but fails to detect potential and Glauber regions.

Why does asy.m fail to detect potential regions?

Example: threshold expansion, $y=m^{2}-\frac{q^{2}}{4} \rightarrow 0$:

$$
F=\int \frac{\mathrm{D} k}{\left(k^{2}-m^{2}\right)\left((k-q)^{2}-m^{2}\right)}=\mu^{2 \epsilon} e^{\epsilon \gamma_{E}} \Gamma(\epsilon) \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2} \delta\left(1-\sum x_{i}\right)\left(x_{1}+x_{2}\right)^{2 \epsilon-2}}{\left[m^{2}\left(x_{1}-x_{2}\right)^{2}+4 y x_{1} x_{2}\right]^{\epsilon}}
$$

\hookrightarrow Feynman-parameter representation (where argument of δ-function may vary)
Relevant regions (specified by scaling relations for parameters x_{1}, x_{2}):

- hard (h): $x_{1} \sim y^{0}, x_{2} \sim y^{0}$
- potential $(p): x_{1}+x_{2} \sim y^{0}, x_{1}-x_{2} \sim y^{1 / 2} \quad \rightsquigarrow$ not found by asy.m!
\hookrightarrow Only regions with simple scalings $x_{i} \sim y^{v_{i}}$ found!
New version: asy2.m
B.J., A. Smirnov, V. Smirnov, arXiv:1206.0546
http://www-ttp.particle.uni-karlsruhe.de/~asmirnov/Tools-Regions.htm automatically eliminates cancellations between parameters by
- splitting the integral at the critical points,
- performing variable transformations:

$$
\int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2} \delta\left(1-\sum x_{i}\right)\left(x_{1}+x_{2}\right)^{2 \epsilon-2}}{\left[m^{2}\left(x_{1}-x_{2}\right)^{2}+4 y x_{1} x_{2}\right]^{\epsilon}}=\int_{0}^{\infty} \frac{\mathrm{d} x_{1}^{\prime} \mathrm{d} x_{2}^{\prime} \delta\left(1-\sum x_{i}^{\prime}\right)\left(x_{1}^{\prime}+x_{2}^{\prime}\right)^{2 \epsilon-2}}{\left[m^{2} x_{2}^{\prime 2}+y x_{1}^{\prime}\left(x_{1}^{\prime}+2 x_{2}^{\prime}\right)\right]^{\epsilon}}
$$

Regions after variable transformation:

$$
F=\int \frac{\mathrm{D} k}{\left(k^{2}-m^{2}\right)\left((k-q)^{2}-m^{2}\right)}=\mu^{2 \epsilon} e^{\epsilon \gamma_{E}} \Gamma(\epsilon) \int_{0}^{\infty} \frac{\mathrm{d} x_{1}^{\prime} \mathrm{d} x_{2}^{\prime} \delta\left(1-\sum x_{i}^{\prime}\right)\left(x_{1}^{\prime}+x_{2}^{\prime}\right)^{2 \epsilon-2}}{\left[m^{2} x_{2}^{\prime 2}+y x_{1}^{\prime}\left(x_{1}^{\prime}+2 x_{2}^{\prime}\right)\right]^{\epsilon}}
$$

- hard (h): $x_{1}^{\prime} \sim y^{0}, x_{2}^{\prime} \sim y^{0}$
- potential $(p): x_{1}^{\prime} \sim y^{0}, x_{2}^{\prime} \sim y^{1 / 2}$
\hookrightarrow no cancellations \rightsquigarrow simple scalings $x_{i}^{\prime} \sim y^{v_{i}} \Rightarrow$ found by asy.m / asy2.m \checkmark

Usage of new features in asy2.m: option PreResolve

AlphaRepExpand[\{k\}, $\left\{k^{\wedge} 2-m \wedge 2\right.$, (k-q)^2 - m^2\},

$$
\left\{q^{\wedge} 2->4 *\left(m^{\wedge} 2-y\right)\right\},\{m->1, y ~->x\} \text {, PreResolve }->\text { True] }
$$

- automatically detects all regions
- prints the corresponding variable transformations $x_{1,2} \rightarrow x_{1,2}^{\prime}$

Glauber regions:

- cancellations like $\left(x_{1}-x_{2}\right)\left(x_{3}-x_{4}\right)$
- automatically treated by asy2.m

V Summary

Expansion by regions: foundation and generalization

- Conditions for regions (+ corresponding expansions \& domains) established.
- Identity proven \rightsquigarrow relates exact integral to sum of expanded terms:

$$
F=\left\{\begin{array}{c}
\text { single } \\
\text { expansions }
\end{array}\right\}-\left\{\begin{array}{c}
\text { double } \\
\text { expansions }
\end{array}\right\}+\left\{\begin{array}{c}
\text { triple } \\
\text { expansions }
\end{array}\right\}-\ldots
$$

\hookrightarrow valid independent of the choice of regularization

- Identity includes overlap contributions with multiple expansions
\hookrightarrow can be scaleless \rightsquigarrow known recipe for expansion by regions \checkmark or relevant (depending on regularization) \rightsquigarrow generalization of known recipe.

Automated search for regions with asy2.m
 B.J., A. Smirnov, V. Smirnov, arXiv:1206.0546

\hookrightarrow automatic detection of the relevant regions for a given integral.

- Original algorithm of asy.m extended by automatic variable transformation.
- asy2.m reveals all relevant regions of a (multi-)loop integral - or issues a warning.
\hookrightarrow Also finds potential \& Glauber regions now.
- http://www-ttp.particle.uni-karlsruhe.de/~asmirnov/Tools-Regions.htm

The expansion by regions has been applied successfully to many complicated loop integrals.

"Real-life" example

2-loop vertex integral in the high-energy limit
Denner, B.J., Pozzorini '08
$Q^{2} \gg m_{t}^{2} \sim M_{W, Z}^{2}$
$\hookrightarrow 9$ relevant regions: [labelled " $\left(k_{1}-k_{2}\right)$ "]
$(h-h),(1 c-h),(h-2 c)$,

$(1 c-1 c),(1 c-2 c),(2 c-2 c)$,
$(1 c-2 u c),(2 u c-2 u c),(u s-2 c)$

- next-to-leading-logarithmic result obtained:
$\alpha^{2}\left\{L^{3}, L^{2} / \epsilon, L / \epsilon^{2}, 1 / \epsilon^{3}\right\}$, where $L=\ln \left(Q^{2} / M_{W}^{2}\right)$
- cross-checked with independent calculation based on sector decomposition

Practical note: how to find the relevant regions

- Look where the propagators have poles:
\star Large-momentum example: $(k+p)^{2}=0$ at $k \sim p, \quad k^{2}-m^{2}=0$ at $k \sim m$.
\star Close the integration contour of one component (e.g. $k^{0}, k^{ \pm}$). For all residues investigate the scaling of the components.
- Use Mellin-Barnes (MB) representations:

$$
\frac{1}{(A+B)^{n}}=\frac{1}{\Gamma(n)} \int_{-i \infty}^{i \infty} \frac{\mathrm{~d} z}{2 i \pi} \Gamma(n+z) \Gamma(-z) \frac{B^{z}}{A^{n+z}}
$$

1. Evaluate the full (scalar) integral for generic propagator powers n_{i} in terms of multiple MB integrals.
2. Close MB contours involving the expansion parameter and extract the leading contributions.
3. The individual terms can be identified with corresponding regions by their homogeneous scaling with the expansion parameter depending on d and n_{i}.
[A subsequent expansion by regions often yields simpler expressions for the contributions.]

Practical note: how to find the relevant regions (2)

- Try all possible regions that you can imagine ... If a region does not contribute, its integrals are scaleless.
- Automated by Mathematica code asy.m, Pak, A. Smirnov, Eur. Phys. J. C 71 (2011) 1626 finds non-scaleless contributions automatically via geometric approach:

$$
\text { AlphaRepExpand }\left[\{k\},\left\{(k+p)^{\wedge} 2, k^{\wedge} 2-m^{\wedge} 2\right\},\left\{p^{\wedge} 2->1\right\},\left\{m^{\wedge} 2->x\right\}\right]
$$

Expansion based on Feynman-parameter integral \rightsquigarrow result: list of regions with scalings of Feynman parameters in powers of the expansion parameter First version of asy.m: potential \& Glauber regions not found \hookrightarrow solved by update asy2.m

- When a region is missing, the total result is often (but not always) more singular than it should be. \rightsquigarrow Important cross-check, but no guarantee!

Large-momentum expansion:

$$
F=\int \frac{\mathrm{D} k}{(k+p)^{2}\left(k^{2}-m^{2}\right)^{2}}
$$

Expansion to all orders in $\frac{m^{2}}{p^{2}}$

- hard: $\sum_{i} T_{i}^{(h)} \frac{1}{\left(k^{2}-m^{2}\right)^{2}}=\sum_{i=0}^{\infty}(1+i) \frac{\left(m^{2}\right)^{i}}{\left(k^{2}\right)^{2+i}}$

$$
\left[(\alpha)_{n}=\Gamma(\alpha+n) / \Gamma(\alpha)\right]
$$

$$
\begin{aligned}
\hookrightarrow F^{(h)} & =\frac{1}{p^{2}}\left(\frac{\mu^{2}}{-p^{2}}\right)^{\epsilon} \frac{e^{\epsilon \gamma_{E}} \Gamma(1+\epsilon) \Gamma(1-\epsilon) \Gamma(-\epsilon)}{\Gamma(1-2 \epsilon)} \sum_{i=0}^{\infty}\left(\frac{m^{2}}{p^{2}}\right)^{i} \frac{(2 \epsilon)_{i}}{i!} \\
& =\frac{1}{p^{2}}\left[-\frac{1}{\epsilon}+\ln \left(\frac{-p^{2}}{\mu^{2}}\right)+2 \ln \left(1-\frac{m^{2}}{p^{2}}\right)\right]+\mathcal{O}(\epsilon)
\end{aligned}
$$

- soft: $\sum_{j} T_{j}^{(s)} \frac{1}{(k+p)^{2}}=\sum_{j_{1}, j_{2}=0}^{\infty} \frac{\left(j_{1}+j_{2}\right)!}{j_{1}!j_{2}!} \frac{(-2 k \cdot p)^{j_{1}}\left(-k^{2}\right)^{j_{2}}}{\left(p^{2}\right)^{1+j_{1}+j_{2}}}$

$$
\begin{aligned}
\hookrightarrow F^{(s)} & =\frac{1}{p^{2}}\left(\frac{\mu^{2}}{m^{2}}\right)^{\epsilon} e^{\epsilon \gamma_{E}} \Gamma(\epsilon) \sum_{j=0}^{\infty}\left(\frac{m^{2}}{p^{2}}\right)^{j} \frac{(\epsilon)_{j}}{(1-\epsilon)_{j}} \\
& =\frac{1}{p^{2}}\left[\frac{1}{\epsilon}+\ln \left(\frac{\mu^{2}}{m^{2}}\right)-\ln \left(1-\frac{m^{2}}{p^{2}}\right)\right]+\mathcal{O}(\epsilon)
\end{aligned}
$$

Full result F exactly reproduced:

$$
F=F^{(h)}+F^{(s)}=\frac{1}{p^{2}}\left[\ln \left(\frac{-p^{2}}{m^{2}}\right)+\ln \left(1-\frac{m^{2}}{p^{2}}\right)\right]+\mathcal{O}(\epsilon)
$$

Example with 3 regions: threshold expansion for heavy-particle pair production

Regions analyzed in Beneke, Smirnov, NPB 522 (1998) 321
Centre-of-mass system: $\left(q^{\mu}\right)=\left(q_{0}, \overrightarrow{0}\right),\left(p^{\mu}\right)=(0, \vec{p})$
Close to threshold: $q^{2} \approx(2 m)^{2} \Rightarrow q^{2} \gg\left|p^{2}\right|$ or $q_{0} \gg|\vec{p}|$

$$
F=\int \frac{\mathrm{D} k}{\left(k^{2}+q_{0} k_{0}-2 \vec{p} \cdot \vec{k}\right)\left(k^{2}-q_{0} k_{0}-2 \vec{p} \cdot \vec{k}\right) k^{2}}
$$

Relevant regions:

- hard $(h): k_{0},|\vec{k}| \sim q_{0} \Rightarrow$ expand $\sum_{j} T_{j}^{(h)}$ in $D_{h}=\left\{k \in \mathbb{R}^{d}:\left|k_{0}\right| \gg|\vec{p}|\right.$ or $\left.|\vec{k}| \gg|\vec{p}|\right\}$
- soft $(s): k_{0},|\vec{k}| \sim|\vec{p}| \Rightarrow$ expand $\sum_{j} T_{j}^{(s)}$ in $D_{s}=\left\{k \in \mathbb{R}^{d}:|\vec{k}| \lesssim\left|k_{0}\right| \lesssim|\vec{p}|\right\}$
- potential $(p): k_{0} \sim \frac{\vec{p}^{2}}{q_{0}},|\vec{k}| \sim|\vec{p}| \Rightarrow \sum_{j} T_{j}^{(p)}$ in $D_{p}=\left\{k \in \mathbb{R}^{d}:\left|k_{0}\right| \ll|\vec{k}| \lesssim|\vec{p}|\right\}$
[no explicit boundaries needed]
\hookrightarrow The expansion $T^{(x)} \equiv \sum_{j} T_{j}^{(x)}$ converges for $k \in D_{x}(x=h, s, p)$.
$\hookrightarrow D_{h} \cup D_{s} \cup D_{p}=\mathbb{R}^{d} \quad\left[D_{h} \cap D_{s}=D_{h} \cap D_{p}=D_{s} \cap D_{p}=\emptyset\right]$
\hookrightarrow The expansions $T^{(h)}, T^{(s)}, T^{(p)}$ commute with each other.

Threshold expansion (2)

Similar transformations as for the large-momentum example yield the following identity:

$$
F=F^{(h)}+\underbrace{F^{(s)}}_{=0}+F^{(p)}-(\underbrace{F^{(h, s)}}_{=0}+\underbrace{F^{(h, p)}}_{=0}+\underbrace{F^{(s, p)}}_{=0})+\underbrace{F^{(h, s, p)}}_{=0 \text { (scaleless) }}
$$

with

$$
\begin{aligned}
& F^{(h)}=-\frac{2 e^{\epsilon \gamma_{E}} \Gamma(\epsilon)}{q^{2}}\left(\frac{4 \mu^{2}}{q^{2}}\right)^{\epsilon} \sum_{j=0}^{\infty}\left(-\frac{4 p^{2}}{q^{2}}\right)^{j} \frac{(1+\epsilon)_{j}}{j!(1+2 \epsilon+2 j)} \\
& F^{(p)}=\frac{e^{\epsilon \gamma_{E}} \Gamma\left(\frac{1}{2}+\epsilon\right) \sqrt{\pi}}{2 \epsilon \sqrt{q^{2}\left(p^{2}-i 0\right)}}\left(\frac{\mu^{2}}{p^{2}-i 0}\right)^{\epsilon} \quad[\text { higher orders vanish }]
\end{aligned}
$$

Exact result reproduced:

$$
F^{(h)}+F^{(p)}=F=\frac{e^{\epsilon \gamma_{E}} \Gamma(\epsilon)}{2 p^{2}}\left(\frac{\mu^{2}}{p^{2}-i 0}\right)^{\epsilon}{ }_{2} F_{1}\left(\frac{1}{2}, 1+\epsilon ; \frac{3}{2} ;-\frac{q^{2}}{4 p^{2}}-i 0\right)
$$

Example with non-commuting expansions: Sudakov form factor

Cannot always choose expansions which commute with each other.

Sudakov limit: $-\left(p_{1}-p_{2}\right)^{2}=Q^{2} \gg m^{2}$

$F=\int \frac{\mathrm{D} k}{\left(k^{+} k^{-}-\vec{k}_{\perp}^{2}+Q k^{+}\right)^{1+\delta}\left(k^{+} k^{-}-\vec{k}_{\perp}^{2}+Q k^{-}\right)^{1-\delta}\left(k^{+} k^{-}-\vec{k}_{\perp}^{2}-m^{2}\right)}$
\hookrightarrow analytic regulator $\delta \rightarrow 0$
[light-cone coordinates: $2 p_{1,2} \cdot k=Q k^{ \pm}, p_{1,2} \cdot k_{\perp}=0$]

Regions \& domains:

- hard $(h): k^{+}, k^{-},\left|\vec{k}_{\perp}\right| \sim Q \Rightarrow D_{h}=\left\{k \in \mathbb{R}^{d}: \vec{k}_{\perp}^{2} \gg m^{2}\right\}$
- 1-collinear $(1 c): k^{+} \sim \frac{m^{2}}{Q}, k^{-} \sim Q,\left|\vec{k}_{\perp}\right| \sim m$
- 2-collinear $(2 c): k^{+} \sim Q, k^{-} \sim \frac{m^{2}}{Q},\left|\vec{k}_{\perp}\right| \sim m$
- Glauber $(g): k^{+}, k^{-} \sim \frac{m^{2}}{Q},\left|\vec{k}_{\perp}\right| \sim m$
- collinear-plane $(c p): k^{+}, k^{-} \sim Q,\left|\vec{k}_{\perp}\right| \sim m$ \hookrightarrow "artificial" region to ensure $\cup_{x} D_{x}=\mathbb{R}^{d}$
[No soft region needed: $T^{(s)} \equiv T^{(1 c)} T^{(2 c)}$]

Most expansions commute, but $T^{(g)} T^{(c p)} \neq T^{(c p)} T^{(g)}$!

Sudakov form factor (2)

$T^{(g)} T^{(c p)} \neq T^{(c p)} T^{(g)} \rightsquigarrow$ Construct identity avoiding combination of (g) and $(c p)$:

$$
\begin{aligned}
F & =F^{(h)}+F^{(1 c)}+F^{(2 c)}+F^{(g)}+F^{(c p)} \\
& -\left(F^{(h, 1 c)}+F^{(h, 2 c)}+F^{(h, g)}+F^{(h, c p)}+F^{(1 c, 2 c)}+F^{(1 c, g)}+F^{(1 c, c p)}+F^{(2 c, g)}+F^{(2 c, c p)}\right) \\
& +F^{(h, 1 c, 2 c)}+F^{(h, 1 c, g)}+F^{(h, 1 c, c p)}+F^{(h, 2 c, g)}+F^{(h, 2 c, c p)}+F^{(1 c, 2 c, g)}+F^{(1 c, 2 c, c p)} \\
& -\left(F^{(h, 1 c, 2 c, g)}+F^{(h, 1 c, 2 c, c p)}\right)+F_{c p \leftarrow g}^{\mathrm{extra}}+F_{g \leftarrow c p}^{\mathrm{extra}}
\end{aligned}
$$

Usual terms:

- no combination of (g) and ($c p$)
- $F^{(g)}, F^{(c p)}$ and all overlap contributions are scaleless (with analytic regularization)

Extra terms:

- $F_{c p \longleftarrow g}^{\text {extra }}$ involves $T^{(c p)} T^{(g)}$ integrated over $k \in D_{c p}$,
- $F_{g \leftarrow c p}^{\text {extra }}$ involves $T^{(g)} T^{(c p)}$ integrated over $k \in D_{g}$, plus all combinations of $T^{(h)}, T^{(1 c)}, T^{(2 c)}$, with alternating signs.

Both extra terms cancel at the integrand level,
because $T^{(1 c)} T^{(g)} T^{(c p)}=T^{(g)} T^{(c p)}$ and similar relations hold.

Sudakov form factor (3)

Both extra terms cancel at the integrand level:

$$
\begin{aligned}
& F_{g \leftarrow c p}^{\mathrm{extra}=} \int_{k \in D_{g}} \mathrm{D} k\left(-1+T^{(h)}+T^{(1 c)}+T^{(2 c)}\right. \\
&\left.\quad \quad-T^{(h, 1 c)}-T^{(h, 2 c)}-T^{(1 c, 2 c)}+T^{(h, 1 c, 2 c)}\right) T^{(g)} T^{(c p)} I \\
&=(-1+3-3+1) \int_{k \in D_{g}} \mathrm{D} k T^{(g)} T^{(c p)} I=0
\end{aligned}
$$

because $T^{(x)} T^{(g)} T^{(c p)}=T^{(g)} T^{(c p)} \forall x \in\{h, 1 c, 2 c\}$.
Similarly: $F_{c p \leftarrow g}^{\text {extra }}=0$ because $T^{(x)} T^{(c p)} T^{(g)}=T^{(c p)} T^{(g)} \forall x \in\{1 c, 2 c\}$.
[The extra terms must cancel \rightsquigarrow otherwise dependence on boundaries of $D_{g}, D_{c p}$.]

Sudakov form factor (4)

Omitting scaleless contributions and vanishing extra terms:

$$
F=F^{(h)}+F^{(1 c)}+F^{(2 c)}
$$

Regions explicitly evaluated to all orders in $\frac{m^{2}}{Q^{2}}$:
[omitting $\mathcal{O}(\delta)$ and $\mathcal{O}(\epsilon)$]

$$
\begin{aligned}
F^{(h)}= & -\frac{1}{Q^{2}}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\left\{\frac{1}{\epsilon^{2}}-\frac{2}{\epsilon} \ln \left(1-\frac{m^{2}}{Q^{2}}\right)+\ln ^{2}\left(1-\frac{m^{2}}{Q^{2}}\right)-2 \operatorname{Li}_{2}\left(\frac{m^{2}}{Q^{2}}\right)-\frac{\pi^{2}}{12}\right\} \\
F^{(1 c)}, F^{(2 c)}=- & \frac{1}{2 Q^{2}}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\left\{ \pm \frac{1}{\delta}\left[\frac{1}{\epsilon}+\ln \frac{Q^{2}}{m^{2}}-\ln \left(1-\frac{m^{2}}{Q^{2}}\right)\right]-\frac{1}{\epsilon^{2}}+\frac{2}{\epsilon} \ln \left(1-\frac{m^{2}}{Q^{2}}\right)\right. \\
& \left.+\frac{1}{2} \ln ^{2} \frac{Q^{2}}{m^{2}}+\ln \frac{Q^{2}}{m^{2}} \ln \left(1-\frac{m^{2}}{Q^{2}}\right)-\ln ^{2}\left(1-\frac{m^{2}}{Q^{2}}\right)+\operatorname{Li}_{2}\left(\frac{m^{2}}{Q^{2}}\right)+\frac{5}{12} \pi^{2}\right\}
\end{aligned}
$$

$\hookrightarrow F^{(1 c)}$ and $F^{(2 c)}$ are not separately finite for $\delta \rightarrow 0$, but their sum is.
Agreement with exact result:

$$
F=-\frac{1}{Q^{2}}\left\{\frac{1}{2} \ln ^{2} \frac{Q^{2}}{m^{2}}+\ln \frac{Q^{2}}{m^{2}} \ln \left(1-\frac{m^{2}}{Q^{2}}\right)-\operatorname{Li}_{2}\left(\frac{m^{2}}{Q^{2}}\right)+\frac{\pi^{2}}{3}\right\}
$$

Sudakov form factor \rightarrow 5-point integral with Glauber contribution

- collinear propagators "doubled", but expansions equivalent
- same regions \& domains
- "double" propagators \rightsquigarrow Glauber contribution present (even with analytic regularization)
- leading contributions:

$$
\begin{aligned}
F_{0}^{(g)} & \propto \frac{1}{\left(Q^{2}\right)^{3}}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\left(\frac{m^{2}}{Q^{2}}\right)^{-2-\epsilon} \\
F_{0}^{(1 c)}, F_{0}^{(2 c)} & \propto \frac{1}{\left(Q^{2}\right)^{3}}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\left(\frac{m^{2}}{Q^{2}}\right)^{-1-\epsilon} \\
F_{0}^{(h)} & \propto \frac{1}{\left(Q^{2}\right)^{3}}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}
\end{aligned}
$$

Example with relevant overlap contributions:

forward scattering with small momentum exchange

Two light-like particles with large centre-of-mass energy exchange a small momentum r :
$p_{1}^{2}=\left(p_{1}-r\right)^{2}=p_{2}^{2}=\left(p_{2}+r\right)^{2}=0$

$\left(p_{1}+p_{2}\right)^{2}=Q^{2} \gg \vec{r}_{\perp}^{2}, \quad r^{ \pm} \approx \mp \frac{\vec{r}_{\perp}^{2}}{Q}$
Symmetrize integral under $k \leftrightarrow r-k$
\hookrightarrow avoids divergences at $\left|k^{ \pm}\right| \rightarrow \infty$ under expansion.

$$
\begin{aligned}
F & =\frac{1}{2} \int \frac{\mathrm{D} k}{k^{2}(r-k)^{2}}\left(\frac{1}{\left(\left(p_{1}-k\right)^{2}\right)^{1+\delta}}+\frac{1}{\left(\left(p_{1}-r+k\right)^{2}\right)^{1+\delta}}\right) \\
& \times\left(\frac{1}{\left(\left(p_{2}+k\right)^{2}\right)^{1-\delta}}+\frac{1}{\left(\left(p_{2}+r-k\right)^{2}\right)^{1-\delta}}\right)
\end{aligned}
$$

Regions: same as for Sudakov form factor (scaling with $m \rightarrow\left|\vec{r}_{\perp}\right|$),
Domains: similar (but more involved for $\left|\vec{k}_{\perp}\right| \gg\left|\vec{r}_{\perp}\right|$)

Forward scattering (2)

Same identity as for Sudakov form factor:

$$
\begin{aligned}
& F=F^{(h)}+F^{(1 c)}+F^{(2 c)}+F^{(g)}+F^{(c p)}
\end{aligned}
$$

$$
\begin{aligned}
& \nmid \boldsymbol{F}^{(h, 1 c, 2 c)}+\boldsymbol{F}^{(h, 1 c, g)}+\boldsymbol{F}^{(h, 1 c, c p)}+\boldsymbol{F}^{(h, 2 c, g)}+\boldsymbol{H}^{(h, 2 c, c p)}+\boldsymbol{H}^{(1 c, 2 c, g)}+\boldsymbol{H}^{(1 c, 2 c, c p)} \\
& -\left(F^{(h, 1 c, 2 c, g)}+F^{(h, 1 c, 2 c, c p)}\right)
\end{aligned}
$$

With analytic regulator $\delta \rightarrow \mathbf{0}: \quad F_{0}=F_{0}^{(1 c)}+F_{0}^{(2 c)} \quad\left[F_{0}^{(h)}\right.$ suppressed, others scaleless]

$$
F_{0}^{(1 c)}=F_{0}^{(2 c)}=\frac{1}{2} \frac{i \pi}{Q^{2} \vec{r}_{\perp}^{2}}\left(\frac{\mu^{2}}{\vec{r}_{\perp}^{2}}\right)^{\epsilon} \frac{e^{\epsilon \gamma_{E}} \Gamma(1+\epsilon) \Gamma^{2}(-\epsilon)}{\Gamma(-2 \epsilon)}
$$

Without analytic regularization ($\delta=0$):
[all terms are still well-defined]

$$
\begin{gathered}
F_{0}=F_{0}^{(1 c)}+F_{0}^{(2 c)}+F_{0}^{(g)}-\left(F_{0}^{(1 c, 2 c)}+F_{0}^{(1 c, g)}+F_{0}^{(2 c, g)}\right)+F_{0}^{(1 c, 2 c, g)} \\
F_{0}^{(x, \ldots)}=\frac{i \pi}{Q^{2} \vec{r}_{\perp}^{2}}\left(\frac{\mu^{2}}{\vec{r}_{\perp}^{2}}\right)^{\epsilon} \frac{e^{\epsilon \gamma_{E}} \Gamma(1+\epsilon) \Gamma^{2}(-\epsilon)}{\Gamma(-2 \epsilon)} \quad \forall\{x, \ldots\} \subset\{1 c, 2 c, g\}
\end{gathered}
$$

\hookrightarrow consistent results independent of regularization: $\frac{1}{2}+\frac{1}{2}=1+1+1-(1+1+1)+1 \checkmark$
\hookrightarrow agreement with leading-order expansion of full result

The general formalism (details)

Identities as in the examples are generally valid, under some conditions.

Consider

- a (multiple) integral $F=\int \mathrm{D} k I$ over the domain $D\left(\right.$ e.g. $D=\mathbb{R}^{d}$),
- a set of N regions $R=\left\{x_{1}, \ldots, x_{N}\right\}$,
- for each region $x \in R$ an expansion $T^{(x)}=\sum_{j} T_{j}^{(x)}$ which converges absolutely in the domain $D_{x} \subset D$.

Conditions

- $\bigcup_{x \in R} D_{x}=D \quad\left[D_{x} \cap D_{x^{\prime}}=\emptyset \forall x \neq x^{\prime}\right]$.
- Some of the expansions commute with each other.

Let $R_{\mathrm{c}}=\left\{x_{1}, \ldots, x_{N_{\mathrm{c}}}\right\}$ and $R_{\mathrm{nc}}=\left\{x_{N_{\mathrm{c}}+1}, \ldots, x_{N}\right\}$ with $1 \leq N_{\mathrm{c}} \leq N$.
Then: $T^{(x)} T^{\left(x^{\prime}\right)}=T^{\left(x^{\prime}\right)} T^{(x)} \equiv T^{\left(x, x^{\prime}\right)} \forall x \in R_{\mathrm{c}}, x^{\prime} \in R$.

- Every pair of non-commuting expansions is invariant under some expansion from R_{c} : $\forall x_{1}^{\prime}, x_{2}^{\prime} \in R_{\mathrm{nc}}, x_{1}^{\prime} \neq x_{2}^{\prime}, \exists x \in R_{\mathrm{c}}: T^{(x)} T^{\left(x_{2}^{\prime}\right)} T^{\left(x_{1}^{\prime}\right)}=T^{\left(x_{2}^{\prime}\right)} T^{\left(x_{1}^{\prime}\right)}$.
- \exists regularization for singularities, e.g. dimensional (+ analytic) regularization. \hookrightarrow All expanded integrals and series expansions in the formalism are well-defined.

The general formalism (2)

Under these conditions, the following identity holds: $\quad\left[F^{(x, \ldots)} \equiv \sum_{j, \ldots} \int \mathrm{D} k T_{j, \ldots)}^{(x, \ldots)} I\right]$

$$
F=\sum_{x \in R} F^{(x)}-\sum_{\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\} \subset R}^{\left\langle R_{\mathrm{c}}+1\right\rangle} F^{\left(x_{1}^{\prime}, x_{2}^{\prime}\right)}+\ldots-(-1)^{n} \sum_{\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\} \subset R}^{\left\langle R_{\mathrm{c}}+1\right\rangle} F^{\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)}+\ldots+(-1)^{N_{\mathrm{c}}} \sum_{x^{\prime} \in R_{\mathrm{nc}}} F^{\left(x^{\prime}, x_{1}, \ldots, x_{N_{\mathrm{c}}}\right)}
$$

where the sums run over subsets $\left\{x_{1}^{\prime}, \ldots\right\}$ containing at most one region from R_{nc}.

Comments

- This identity is exact when the expansions are summed to all orders.

Leading-order approximation for $F \rightsquigarrow$ dropping higher-order terms.

- It is independent of the regularization (dim. reg., analytic reg., cut-off, infinitesimal masses/off-shellness, ...) as long as all individual terms are well-defined.
- Usually regions \& regularization are chosen such that multiple expansions $F^{\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)}(n \geq 2)$ are scaleless and vanish. [\checkmark if each $F_{0}^{(x)}$ is a homogeneous function of the expansion parameter with unique scaling.]
- If $\exists F^{\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots\right)} \neq 0 \rightsquigarrow$ relevant overlap contributions (\rightarrow "zero-bin subtractions"). They appear e.g. when avoiding analytic regularization in SCET.

Automated search for regions with asy2.m (details)

Practical question: How to find the relevant regions?

- Look where the integrand has poles or singularities.
- Extract (form of) expansion terms using Mellin-Barnes representations.
- Try all possible regions \rightsquigarrow irrelevant contributions are scaleless.
\hookrightarrow avoid double-counting of regions with equivalent expansions
\hookrightarrow automatic identification of regions easier in parametric integrals
Example: threshold expansion, $y=m^{2}-\frac{q^{2}}{4} \rightarrow 0$:

$$
F=\int \frac{\mathrm{D} k}{\left(k^{2}-m^{2}\right)\left((k-q)^{2}-m^{2}\right)}=\mu^{2 \epsilon} e^{\epsilon \gamma_{E}} \Gamma(\epsilon) \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2} \delta\left(1-\sum x_{i}\right)\left(x_{1}+x_{2}\right)^{2 \epsilon-2}}{\left[m^{2}\left(x_{1}-x_{2}\right)^{2}+4 y x_{1} x_{2}\right]^{\epsilon}}
$$

\hookrightarrow Feynman-parameter representation (where argument of δ-function may vary)
Regions specified by scaling relations for parameters x_{1}, x_{2} :

- hard (h): $x_{1} \sim y^{0}, x_{2} \sim y^{0}$
- potential $(p): x_{1}+x_{2} \sim y^{0}, x_{1}-x_{2} \sim y^{1 / 2}$

Geometric approach for expansion by regions

Mathematica code asy.m:

- Each monomial from $\left(x_{1}+x_{2}\right) \cdot\left[m^{2}\left(x_{1}-x_{2}\right)^{2}+4 y x_{1} x_{2}\right]$
\hookrightarrow point in 3-dimensional vector space describing its scaling in powers of y, x_{1}, x_{2}.
- Calculate convex hull of these points using Qhull.
http://www.qhull.org
- Facets of convex hull determine scalings $x_{i} \sim y^{v_{i}}$ of all regions with non-vanishing ($=$ non-scaleless) contributions.
\hookrightarrow Hard region $\left(x_{1}, x_{2} \sim y^{0}\right)$ found, but potential region $\left(x_{1}-x_{2} \sim y^{1 / 2}\right)$ not found!

New version: asy2.m
B.J., A. Smirnov, V. Smirnov, arXiv:1206.0546
http://www-ttp.particle.uni-karlsruhe.de/~asmirnov/Tools-Regions.htm performs automatic change of variables to eliminate differences like $\left(x_{1}-x_{2}\right)$:

- for $x_{1} \leq x_{2}: x_{1}=x_{1}^{\prime} / 2, x_{2}=x_{2}^{\prime}+x_{1}^{\prime} / 2$
- for $x_{1} \geq x_{2}: x_{2}=x_{1}^{\prime} / 2, x_{1}=x_{2}^{\prime}+x_{1}^{\prime} / 2$

$$
\int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2} \delta\left(1-\sum x_{i}\right)\left(x_{1}+x_{2}\right)^{2 \epsilon-2}}{\left[m^{2}\left(x_{1}-x_{2}\right)^{2}+4 y x_{1} x_{2}\right]^{\epsilon}}=\int_{0}^{\infty} \frac{\mathrm{d} x_{1}^{\prime} \mathrm{d} x_{2}^{\prime} \delta\left(1-\sum x_{i}^{\prime}\right)\left(x_{1}^{\prime}+x_{2}^{\prime}\right)^{2 \epsilon-2}}{\left[m^{2} x_{2}^{\prime 2}+y x_{1}^{\prime}\left(x_{1}^{\prime}+2 x_{2}^{\prime}\right)\right]^{\epsilon}}
$$

Usage of asy2.m

For (multi-)loop integrals:

$$
F=\int \frac{\mathrm{D} k}{\left(k^{2}-m^{2}\right)\left((k-q)^{2}-m^{2}\right)}=\mu^{2 \epsilon} e^{\epsilon \gamma_{E}} \Gamma(\epsilon) \int_{0}^{\infty} \frac{\mathrm{d} x_{1}^{\prime} \mathrm{d} x_{2}^{\prime} \delta\left(1-\sum x_{i}^{\prime}\right)\left(x_{1}^{\prime}+x_{2}^{\prime}\right)^{2 \epsilon-2}}{\left[m^{2} x_{2}^{\prime 2}+y x_{1}^{\prime}\left(x_{1}^{\prime}+2 x_{2}^{\prime}\right)\right]^{\epsilon}}
$$

AlphaRepExpand[\{k\}, $\left\{k^{\wedge} 2-m \wedge 2,(k-q) \wedge 2-m \wedge 2\right\}$,

$$
\left\{q^{\wedge} 2 \rightarrow 4 *\left(m^{\wedge} 2-y\right)\right\},\{m \rightarrow 1, y \rightarrow x\}, \text { PreResolve } \rightarrow \text { True] }
$$

automatically detects all regions

- hard $(h): x_{1}^{\prime} \sim y^{0}, x_{2}^{\prime} \sim y^{0} \rightsquigarrow T_{0}^{(h)} I=\left(x_{1}^{\prime}+x_{2}^{\prime}\right)^{2 \epsilon-2}\left(m^{2} x_{2}^{\prime 2}\right)^{-\epsilon}$
- potential $(p): x_{1}^{\prime} \sim y^{0}, x_{2}^{\prime} \sim y^{1 / 2} \rightsquigarrow T_{0}^{(p)} I=x_{1}^{\prime 2 \epsilon-2}\left(m^{2} x_{2}^{\prime 2}+y{x_{1}^{\prime}}^{2}\right)^{-\epsilon}$
and prints the corresponding variable transformations $x_{1,2} \rightarrow x_{1,2}^{\prime}$.

Also for general parametric integrals:

```
WilsonExpand[m^2*x2^2 + y*x1*(x1+2*x2), x1+x2,
    {x1, x2}, {m -> 1, y -> x}, Delta -> True]
```

Details of syntax \& output descriptions \rightsquigarrow paper

Glauber regions with asy2.m
5-point integral with simplified kinematics:
$p_{1}=p_{2}=p, q_{1}=q_{2}=q, p^{2}=q^{2}=0$, $(p+q)^{2}=Q^{2} \gg m^{2}$

$$
F=-\mu^{2 \epsilon} e^{\epsilon \gamma_{E}} \Gamma(3+\epsilon) \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \cdots \mathrm{~d} x_{5} \delta\left(1-\sum x_{i}\right)\left(x_{1}+\ldots+x_{5}\right)^{1+2 \epsilon}}{\left[Q^{2}\left(x_{2}-x_{3}\right)\left(x_{4}-x_{5}\right)+m^{2} x_{1}\left(x_{1}+\ldots+x_{5}\right)-i 0\right]^{3+\epsilon}}
$$

Glauber region present: $x_{2}-x_{3} \sim m^{2}$ or $x_{4}-x_{5} \sim m^{2}$
\hookrightarrow 2-fold variable transformation to eliminate both differences $\left(x_{2}-x_{3}\right)\left(x_{4}-x_{5}\right)$
\hookrightarrow performed automatically by asy2.m:
AlphaRepExpand[\{k\}, $\{k \wedge 2-m \wedge 2,(p-k) \wedge 2,(p+k) \wedge 2,(q-k) \wedge 2,(q+k) \wedge 2\}$, $\left\{p^{\wedge} 2->0, q^{\wedge} 2->0, p * q->Q^{\wedge} 2 / 2\right\},\{Q ~->1, m \wedge 2->x\}$, PreResolve -> True]
\hookrightarrow finds all relevant regions (including variable transformations) \checkmark
Details about correspondence between regions in x_{i} and regions in $k \rightsquigarrow$ paper

