GK Workshop Sasbachwalden 2002

Sudakov logarithms in a massive U(1) theory in two-loop approximation

Bernd Feucht

Institute for Theoretical Particle Physics University of Karlsruhe

In collaboration with Johann H. Kühn and Sven-Olaf Moch

- Motivation
- Sudakov logarithms
- U(1) form factor in two-loop approximation
- Summary

Electroweak precision physics

- experimentally measured by now at energy scales up to $\sim M_{W,Z}$
- future generation of accelerators \rightarrow TeV region

Electroweak radiative corrections

Kühn et al. '00; Fadin et al. '00; Denner, Pozzorini '01

at high momentum transfer $Q \sim \text{TeV} \gg M_{W,Z}$

large negative corrections in *exclusive* cross sections

Important class of processes: four-fermion scattering

Form factor *F* describes vertex corrections:

Perturbation theory

Expand the form factor in $\alpha \ll 1$:

$$\boldsymbol{F} = F_0 + \alpha F_1 + \alpha^2 F_2 + \dots$$

Why do we need higher order corrections?

- $F_0 = 1 \rightarrow \text{Born term}$, leading order contribution (LO)
- $F_1 \rightarrow$ next-to-leading order (NLO), one-loop correction \hookrightarrow renormalization introduces *scale dependence*: $\alpha(\mu) F_1$
- $F_2 \rightarrow$ next-to-next-leading order (NNLO), two-loop correction \hookrightarrow reduces scale variation \rightarrow essential for precision calculations

Massive U(1) model

High energy behaviour → *Sudakov limit*

- momentum transfer $\left|q^{2}\right|\equiv Q^{2}\gg M^{2}$
 - \hookrightarrow neglect terms suppressed by a factor of M^2/Q^2
 - \rightarrow logarithmic approximation
- neglect fermion masses \rightarrow external on-shell fermions: $p_1^2 = p_2^2 = 0$

Sudakov logarithms

One-loop correction to the U(1) form factor

$$\frac{\alpha F_1}{4\pi} = \frac{\alpha}{4\pi} \left\{ \left(1 - \frac{M^2}{Q^2} \right)^2 \left[-\ln^2 \left(\frac{Q^2}{M^2} \right) - 2\ln \left(\frac{Q^2}{M^2} \right) \ln \left(1 - \frac{M^2}{Q^2} \right) + 2\operatorname{Li}_2 \left(\frac{M^2}{Q^2} \right) - \frac{2\pi^2}{3} \right] + \left(3 - 2\frac{M^2}{Q^2} \right) \ln \left(\frac{Q^2}{M^2} \right) - \frac{7}{2} + 2\frac{M^2}{Q^2} \right\}$$

Logarithmic approximation: $\alpha F_1 \Big|_{\text{logs}} = \frac{\alpha}{4\pi} \Big[-\ln^2 \Big(\frac{Q^2}{M^2} \Big) + 3\ln \Big(\frac{Q^2}{M^2} \Big) - \frac{2\pi^2}{3} - \frac{7}{2} \Big]$

Logarithmic approximation of the U(1) form factor

Where do double logarithms arise from?

Simplified loop integration, M = 0:

$$\int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 + i\varepsilon} \frac{1}{(p_1 + k)^2 + i\varepsilon} \frac{1}{(p_2 + k)^2 + i\varepsilon}$$

Gauge boson propagator:
$$\frac{1}{k^2 + i\varepsilon} \sim -i\pi \,\delta(k^2) \Rightarrow \text{contribution from } k^2 = 0$$

 \hookrightarrow Fermion propagators:
$$\frac{1}{(p_{1,2} + k)^2} \sim \frac{1}{2E_f E_b (1 \mp \cos \theta_{pk})}$$

 \rightarrow Loop integration is singular at $E_b = 0$ and $\cos \theta_{pk} = \pm 1$ (i.e. $\vec{k} || \vec{p}_{1,2}$)

$$\int \frac{d^4k}{(2\pi)^4} \longrightarrow \int \frac{dE_b}{E_b} \int \frac{d(\cos\theta_{pk})}{1 \mp \cos\theta_{pk}} \sim \ln(\dots) \ln(\dots)$$

Resummation of the logarithms

Large radiative corrections in the TeV region

 \rightarrow Systematic treatment of higher order corrections needed.

Evolution equation for the form factor Sen '81; Collins '89; Korchemsky '89; ... in logarithmic approximation \rightsquigarrow sum up logarithms to all orders in α :

$$\frac{\partial F(Q^2)}{\partial \ln Q^2} = \left[\int_{M^2}^{Q^2} \frac{dx}{x} \gamma(\alpha(x)) + \zeta(\alpha(Q^2)) + \xi(\alpha(M^2)) \right] F(Q^2)$$

Solution:

$$F(Q^2) = \tilde{F}(\alpha(M^2)) \exp\left\{\int_{M^2}^{Q^2} \frac{dx}{x} \left[\int_{M^2}^{x} \frac{dx'}{x'} \gamma(\alpha(x')) + \zeta(\alpha(x)) + \xi(\alpha(M^2))\right]\right\}$$

Schematically:

$$F = (1 + \alpha \cdot \text{const} + \alpha^2 \cdot \text{const} + \dots) \exp\left(\alpha (\ln^2 + \ln) + \alpha^2 (\ln^3 + \ln^2 + \ln) + \dots\right)$$

Coefficients involve anomalous dimensions γ , ζ , ξ and running of $\alpha(\mu) (\rightarrow \beta$ function).

Resummation (2)

 $F = 1 + \alpha (\ln^2 + \ln + \text{const}) + \alpha^2 (\ln^4 + \ln^3 + \ln^2 + \ln + \text{const}) + \dots$

 $= (1 + \alpha \cdot \text{const} + \alpha^2 \cdot \text{const} + \dots) \exp\left(\alpha (\ln^2 + \ln) + \alpha^2 (\ln^3 + \ln^2 + \ln) + \dots\right)$

Improved perturbation series:

- exp(...) contains all large logarithms
- $\bullet \ {\rm prefactor} \sim {\rm const}$

Leading logarithm in $\mathcal{O}(\alpha^n)$: $\left[\alpha \ln^2 \left(\frac{Q^2}{M^2} \right) \right]^n$

Match expansion of $\exp(\ldots)$ with known results from perturbation theory \to extract coefficients of anomalous dimensions

 \hookrightarrow obtain leading (and subleading) logarithms of higher order corrections.

Knowledge of anomalous dimensions for massive SU(N) and U(1) models:

- ζ and ξ up to $\mathcal{O}(\alpha)$
- γ up to $\mathcal{O}(\alpha^2)$

Kodaira, Trentadue '81

 \Rightarrow NNLL approximation of F_2 known.

U(1) form factor in two-loop approximation

Known from resummation:

(without Higgs contributions)

$$\begin{aligned} \alpha^2 F_2 &= \frac{\alpha^2}{(4\pi)^2} \left[+\frac{1}{2} \ln^4 \left(\frac{Q^2}{M^2} \right) - \left(\frac{4}{9} n_f + 3 \right) \ln^3 \left(\frac{Q^2}{M^2} \right) \\ &+ \left(\frac{38}{9} n_f + \frac{2\pi^2}{3} + 8 \right) \ln^2 \left(\frac{Q^2}{M^2} \right) + \dots \right] \\ &\qquad \left(n_f = \# \text{ fermions} \right) \end{aligned}$$

- NNLL approximation known, but \ln^1 and \ln^0 missing
- $Q \sim 1 \,\mathrm{TeV} \rightarrow \ln^4 \sim \ln^3 \sim \ln^2$
- alternating sign \rightarrow cancellation between logarithmic terms
- contribution from missing terms?

Complete two-loop corrections in logarithmic approximation necessary.

Kühn et al. '01

Two-loop contributions to the U(1) form factor

Self energy corrections:

Calculation of the feynman diagrams – some aspects

Tensor reduction of feynman integrals

Aim: tensor integrals \rightarrow scalar integrals

One-loop integrals:

Passarino, Veltman '79

$$\int \frac{d^D k}{(2\pi)^D} \, \frac{k^{\mu} \, k^{\nu}}{k^2 (k+p)^2} = g^{\mu\nu} B_{00}(p^2) + p^{\mu} p^{\nu} B_{11}(p^2)$$

- determine set of Lorentz tensors ($g^{\mu\nu}$ and external momenta)
- $\bullet\,$ extract the coefficients: contractions $\rightarrow\,$ set of linear equations
- \hookrightarrow not possible for all two-loop topologies

Two-loop integrals:

 \rightarrow need alternatives

Two-loop tensor reduction

• introduce Schwinger parameters:

$$\frac{1}{(k_i^2)^{\nu_i}} = \frac{(-1)^{\nu_i}}{\Gamma(\nu_i)} \int_0^\infty dx_i \, x_i^{\nu_i - 1} \, e^{x_i k_i^2}$$

• relatively simple tensor reduction, e.g.:

$$\int \frac{d^D k}{i\pi^{D/2}} \, k^{\mu} k^{\nu} \, e^{ak^2} = -\frac{1}{2a} \, g^{\mu\nu} \int \frac{d^D k}{i\pi^{D/2}} \, e^{ak^2}$$

• map factors within parameter integrals to operators which

- increase powers of propagators: $\mathbf{i}^+ \frac{1}{(k_i^2)^{\nu_i}} = \frac{1}{(k_i^2)^{\nu_i+1}}$ - increase the space-time dimension: $\mathbf{d}^+ \int \frac{d^D K}{i\pi^{D/2}} = \int \frac{d^{D+2} K}{i\pi^{(D+2)/2}}$

Calculation of scalar integrals - some methods

• Partial integration: reduce powers of propagators

$$\int d^D k \, \frac{\partial}{\partial k^{\mu}} \, \frac{k^{\mu}}{\text{(propagators)}} = 0$$

and similar equations \rightarrow relations between integrals. Repeated application \rightarrow simpler topologies.

• Feynman parameters: combine propagators

$$\frac{1}{(k^2)^{\nu_1} (\ell^2)^{\nu_2}} = \frac{\Gamma(\nu_1 + \nu_2)}{\Gamma(\nu_1) \Gamma(\nu_2)} \int_0^1 dx \, \frac{x^{\nu_1 - 1} (1 - x)^{\nu_2 - 1}}{[x \, k^2 + (1 - x)\ell^2]^{\nu_1 + \nu_2}}$$

• Mellin-Barnes representation: massive \rightarrow massless propagators

$$\frac{1}{(k^2 - M^2)^{\nu}} = \frac{1}{\Gamma(\nu)} \int_{-i\infty}^{i\infty} \frac{ds}{2\pi i} \, \frac{(-M^2)^s}{(k^2)^{\nu+s}} \, \Gamma(-s) \, \Gamma(\nu+s)$$

U(1) form factor in two-loop approximation

Consider only contributions $\propto n_f = \#$ fermions B.F., Kühn, Moch $\hookrightarrow n_f$ -part is separately gauge invariant and renormalizable.

- renormalization of the coupling α in the $\overline{\rm MS}$ scheme at the scale $\mu^2=M^2$
- renormalization of the gauge boson mass M in the on-shell scheme

Result:

$$\begin{split} \alpha^2 F_{2,n_f} = & \frac{\alpha^2 n_f}{(4\pi)^2} \left\{ \left(1 - \frac{M^2}{Q^2}\right) \left(1 - 3\frac{M^2}{Q^2}\right) \left[-\frac{4}{9} \ln^3 \left(\frac{Q^2}{M^2}\right) - \frac{4}{3} \ln^2 \left(\frac{Q^2}{M^2}\right) \ln \left(1 - \frac{M^2}{Q^2}\right) \right. \\ & \left. + \frac{8}{3} \ln \left(\frac{Q^2}{M^2}\right) \operatorname{Li}_2 \left(\frac{M^2}{Q^2}\right) + \frac{8}{3} \operatorname{Li}_3 \left(\frac{M^2}{Q^2}\right) \right] \right. \\ & \left. + \left(1 - \frac{M^2}{Q^2}\right)^2 \left[\frac{16}{9} \ln \left(\frac{Q^2}{M^2}\right) \ln \left(1 - \frac{M^2}{Q^2}\right) - \frac{16}{9} \operatorname{Li}_2 \left(\frac{M^2}{Q^2}\right) + \frac{16\pi^2}{27} \right] \right. \\ & \left. + \left(\frac{38}{9} - \frac{52}{9}\frac{M^2}{Q^2} + \frac{8}{9}\frac{M^4}{Q^4}\right) \ln^2 \left(\frac{Q^2}{M^2}\right) - \left(\frac{34}{3} - \frac{88}{9}\frac{M^2}{Q^2}\right) \ln \left(\frac{Q^2}{M^2}\right) + \frac{115}{9} - \frac{88}{9}\frac{M^2}{Q^2} \right] \end{split}$$

Logarithmic approximation:

$$\alpha^2 F_{2,n_f} \bigg|_{\mathsf{logs}} = \frac{\alpha^2 n_f}{(4\pi)^2} \bigg[-\frac{4}{9} \ln^3 \bigg(\frac{Q^2}{M^2} \bigg) + \frac{38}{9} \ln^2 \bigg(\frac{Q^2}{M^2} \bigg) - \frac{34}{3} \ln \bigg(\frac{Q^2}{M^2} \bigg) + \frac{16\pi^2}{27} + \frac{115}{9} \bigg]$$

Exact n_f form factor \leftrightarrow logarithmic approximation

Maximum error of logarithmic approximation < 10% (for $Q \ge 400 \,\text{GeV}$)

Summary

- The two-loop contributions of the n_f -part in the U(1) form factor have been calculated *exactly* and in complete *logarithmic approximation*.
- For energies in the TeV region, the form factor is quite well described by the logarithmic approximation.
- Large cancellations between the logarithmic terms.
- All terms of the logarithmic approximation are needed, up to \ln^0 .

Outlook

- Full two-loop contributions to the U(1) form factor.
 Exact calculation impossible → logarithmic approximation
 → work in progress ...
- Higgs-contributions: similar to n_f part. Dependence on the Higgs mass? \rightarrow work in progress ...
- Extension to other gauge theories: SU(2), Standard Model.