ETH Zürich, Particle Physics Seminar, June 26, 2006

Evaluation of electroweak two-loop corrections in the high energy limit

Bernd Jantzen

Paul Scherrer Institut (PSI), CH-Villigen

Overview

- I Motivation
- **II** Four-fermion scattering
 - factorization of the four-fermion amplitude
 - SU(2) vector form factor
 - results

III Evaluating Feynman diagrams in the high energy limit

- expansion by regions
- Mellin–Barnes representation
- example

IV Summary & outlook

J.H. Kühn, A.A. Penin, hep-ph/9906545

- J.H. Kühn, A.A. Penin, V.A. Smirnov, Eur. Phys. J. C 17 (2000) 97
- J.H. Kühn, S. Moch, A.A. Penin, V.A. Smirnov, Nucl. Phys. B 616 (2001) 286
- B. Feucht, J.H. Kühn, S. Moch, Phys. Lett. B 561 (2003) 111
- B. Feucht, J.H. Kühn, A.A. Penin, V.A. Smirnov, Phys. Rev. Lett. 93 (2004) 101802
- B. Jantzen, J.H. Kühn, A.A. Penin, V.A. Smirnov, Phys. Rev. D 72 (2005) 051301(R)
- B. Jantzen, J.H. Kühn, A.A. Penin, V.A. Smirnov, Nucl. Phys. B 731 (2005) 188
- B. Jantzen, V.A. Smirnov, hep-ph/0603133 (\rightarrow Eur. Phys. J. C)

Electroweak precision physics

- experimentally measured (LEP, Tevatron) at energy scales $\leq M_{W,Z}$
- upcoming accelerators (LHC, ILC) \rightarrow TeV region
- new energy domain $\sqrt{s} \gg M_{W,Z}$ becomes accessible!

Electroweak radiative corrections at high energies $\sqrt{s} \sim \text{TeV} \gg M_{W,Z}$

Fadin et al. '00; Kühn et al. '00, '01, '05; Denner et al. '01, '03, '04, '05; Pozzorini '04; B.J. et al. '03, '04, '05, '06; ...

large corrections in *exclusive* cross sections

- electroweak corrections with large logarithms: $\alpha^n \ln^j(s/M_{W,Z}^2)$
- leading Sudakov logarithms (j = 2n, LL), but large coefficients in front of subleading logarithms ($j \le 2n 1 \Rightarrow$ NLL, NNLL, N³LL, ...)
- origin of Sudakov logarithms: mass singularities for $M_{W,Z} \rightarrow 0$
- + 1-loop corrections \sim 10%, 2-loop corrections \sim 1%, needed for ILC
- individual logarithmic contributions even larger, but strong cancellations

II Four-fermion scattering

Four-fermion scattering: $f\bar{f} \rightarrow f'\bar{f}'$, important class of processes

Factorization of QED contributions:

- QED factor $U_{QED} \rightarrow IR$ singularities from virtual massless photons (regularized dimensionally or by small photon mass, compensated by real corrections)
- amplitude $A_{\text{EW}} \rightarrow$ remaining electroweak contributions, IR-safe
- calculate A_{EW} by evaluating A/U_{QED} with $M_{\text{photon}} = M_W$ \hookrightarrow works at NNLL accuracy \checkmark

Problem at N³LL (2-loop linear logarithm): mixing of gauge groups $SU(2) \times U(1)_Y$ through Higgs mechanism \Rightarrow use simplified model without mixing: B.J., Kühr

- B.J., Kühn, Penin, Smirnov '04, '05
- factorization of QED contributions works at N³LL accuracy
- single mass parameter: $M = M_W = M_{Z=W^3} = M_{photon=B}$
- include mass difference $(M_Z M_W)$ by expansion around $M_Z \approx M_W$
- remaining error $\sim \mathcal{O}(\sin^2 \theta_W) \sim 20\%$ in coefficient of linear 2-loop logarithm

Factorization into form factor and reduced amplitude:

Form factor *F* of vector current:

$$q \sim p_1 = F \cdot \bar{u}(p_2) \gamma^{\mu} u(p_1) + \mathcal{O}(\text{fermion masses})$$

High energy behaviour $s \sim |t| \sim |u| \gg M_{W,Z}^2$

references: see Kühn et al. '01

- all double logarithms $\alpha^n \ln^{2n} \rightsquigarrow$ form factors F^2
- reduced amplitude $\tilde{A} \to \text{only single logarithms } \alpha^n \ln^n$
- \tilde{A} can be obtained from 1-loop and massless 2-loop calculations

⇒ For full logarithmic (N³LL) 2-loop amplitude: need form factor F \hookrightarrow evaluate 2-loop vertex diagrams

SU(2) form factor in two loops: diagrams

+ 1-loop × 1-loop corrections + renormalization

High energy behaviour of the form factor

 \hookrightarrow Sudakov limit:

$$q \sim p_2 = F(Q^2) \cdot \bar{u}(p_2) \gamma^{\mu} u(p_1)$$

- momentum transfer $-q^2 \equiv Q^2 \gg M^2 \equiv M_{W,Z}^2$ $\begin{bmatrix} \text{Euclidean } Q^2 > 0, \text{ real } F \xrightarrow[\text{continuation}]{} \text{Minkowskian } Q^2 = -s - i0 < 0 \end{bmatrix}$
- neglect fermion masses \rightarrow external on-shell fermions: $p_1^2 = p_2^2 = 0$
- logarithmic approximation: neglect terms suppressed by a factor of M^2/Q^2

 \hookrightarrow works well for 2-loop n_f contribution where the exact result in M^2/Q^2 is known B.F., Kühn, Moch '03

- \Rightarrow contains powers of the large logarithm $\ln(Q^2/M^2)$
- \Rightarrow leading order of asymptotic expansion in M^2/Q^2
- only 2-loop logarithms $\ln^{4,3,2,1}$, non-logarithmic constant more difficult
- choose $M_{\text{Higgs}} = M_W \rightarrow$ calculation easier, affects only N³LL, small error

SU(2) form factor in two loops: result

$$\left(\frac{\alpha}{4\pi}\right)^{2} \left[\frac{9}{32} \ln^{4} \left(\frac{Q^{2}}{M^{2}}\right) - \frac{43}{48} \ln^{3} \left(\frac{Q^{2}}{M^{2}}\right) + \left(\frac{7}{8}\pi^{2} - \frac{235}{48}\right) \ln^{2} \left(\frac{Q^{2}}{M^{2}}\right) \text{ confirmed } \checkmark \right. \\ \left. + \left(\frac{13}{2}\sqrt{3} \operatorname{Cl}_{2}\left(\frac{\pi}{3}\right) + \frac{15}{4}\sqrt{3}\pi - \frac{61}{2}\zeta_{3} - \frac{11}{24}\pi^{2} + \frac{65}{4}\right) \ln \left(\frac{Q^{2}}{M^{2}}\right) \text{ new!} \right]$$

B.J., Kühn, Moch '03; B.J., Kühn, Penin, Smirnov '04, '05; B.J., Smirnov '06 $\ln^{4,3,2}$: Kühn, Moch, Penin, Smirnov '01

Sizes of logarithmic contributions (at Q = 1 TeV in per mil):

Abelian: $+0.3 \ln^4 - 1.7 \ln^3 + 8.2 \ln^2 - 11 \ln + 15$ +1.6 -2.0 +1.9 -0.5 +0.1fermionic: $-1.0 \ln^3 + 9.5 \ln^2 - 26 \ln + 42$ -1.2 +2.2 -1.2 +0.4non-Abelian + Higgs: $+1.8 \ln^3 - 14 \ln^2 + 43 \ln - \dots$ +2.1 -3.2 +2.0total: $+0.3 \ln^4 - 0.9 \ln^3 + 3.7 \ln^2 + 6.9 \ln$ +1.6 -1.0 +0.9 +0.3

SU(2) form factor in two loops: result (2)

Electroweak results: example $\sigma(e^+e^- \rightarrow q\bar{q}) \ (q = d, s)$

numerical 2-loop result:

$$\left(\frac{\alpha_{\mathsf{ew}}}{4\pi}\right)^2 \left[+2.79\ln^4\left(\frac{s}{M_W^2}\right) - 51.98\ln^3\left(\frac{s}{M_W^2}\right) + 321.34\ln^2\left(\frac{s}{M_W^2}\right) - 757.35\ln\left(\frac{s}{M_W^2}\right) \right]$$

III Evaluating Feynman diagrams in the high energy limit

Reduction to scalar diagrams

- given from Feynman rules: $\mathcal{F}^{\mu} = \bar{u}(p_2) \Gamma^{\mu}(p_1, p_2) u(p_1)$
- wanted: form factor F with $\mathcal{F}^{\mu} = F \cdot \bar{u}(p_2) \gamma^{\mu} u(p_1)$
- can be calculated using the properties of Dirac matrices and spinors, $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}, \not p_1 u(p_1) = 0, \ \bar{u}(p_2) \not p_2 = 0$, combined with tensor reduction
- more elegantly with a *projector* on the form factor:

$$F = \frac{\operatorname{Tr}\left[\gamma_{\mu} \not p_{2} \Gamma^{\mu}(p_{1}, p_{2}) \not p_{1}\right]}{2(d-2) q^{2}}$$

• **output:** form factor *F* in terms of *scalar Feynman integrals*

$$\int \mathrm{d}^{d} k_{1} \int \mathrm{d}^{d} k_{2} \frac{\prod_{j=1}^{N} (\ell_{j} \cdot \ell_{j}')^{\nu_{j}}}{\prod_{i=1}^{L} (k_{i}'^{2} - M_{i}^{2})^{n_{i}}}$$

with propagators and irreducible scalar products in the numerator

Expansion by regions

a powerful method for the asymptotic expansion of Feynman diagrams

- given: scalar Feynman integral & limit like $Q^2 \gg M^2$
- wanted: expansion of the *integral* in M^2/Q^2
- problem: direct expansion of the *integrand* leads to (new) IR/UV singularities

Recipe for the method of expansion by regions:

- 1. *divide* the integration domain into *regions* for the loop momenta (especially such regions where singularities are produced in the limit $M \rightarrow 0$)
- 2. in every region, *expand* the integrand in a *Taylor series* with respect to the parameters that are considered small *there*
- 3. *integrate* the expanded integrands over the *whole integration domain*
- 4. put to zero any *integral without scale* (like with dimensional regularization)
- usually only a few regions give non-vanishing contributions
- for logarithmic approximation: only leading order of the expansion needed
 → in step 2. all small parameters in the integrand are simply set to zero
- sometimes additional regularization (apart from ε) needed for individual regions

Expansion by regions: example

Vertex form factor in the Sudakov limit $Q^2 \gg M^2$

• typical regions for each loop momentum k:

hard (h): all components of
$$k \sim Q$$

soft (s): all components of $k \sim M$
ultrasoft (us): all components of $k \sim M^2/Q$
1-collinear (1c): $k^2 \sim 2p_1 \cdot k \sim M^2$, $2p_2 \cdot k \sim Q^2$
2-collinear (2c): $k^2 \sim 2p_2 \cdot k \sim M^2$, $2p_1 \cdot k \sim Q^2$
1-loop vertex correction: $f = \frac{e^{\varepsilon \gamma E}}{i\pi^{d/2}} \int \frac{d^d k}{(k^2 - M^2)(k^2 - 2p_1 \cdot k)(k^2 - 2p_2 \cdot k)}$
 $f^{(h)} = \frac{1}{Q^2} \left[-\frac{1}{\varepsilon^2} + \frac{1}{\varepsilon} \ln(Q^2) - \frac{1}{2} \ln^2(Q^2) + \frac{\pi^2}{12} + \mathcal{O}\left(\frac{M^2}{Q^2}\right) \right]$
 $f^{(1c)} + f^{(2c)} = \frac{1}{Q^2} \left[\frac{1}{\varepsilon^2} - \frac{1}{\varepsilon} \ln(Q^2) - \frac{1}{2} \ln^2(M^2) + \ln(M^2) \ln(Q^2) - \frac{5}{12}\pi^2 + \mathcal{O}\left(\frac{M^2}{Q^2}\right) \right]$
 $\Rightarrow f = f^{(h)} + f^{(1c)} + f^{(2c)} = \frac{1}{Q^2} \left[-\frac{1}{2} \ln^2\left(\frac{Q^2}{M^2}\right) - \frac{\pi^2}{3} + \mathcal{O}\left(\frac{M^2}{Q^2}\right) \right]$

Expansion by regions: how its works

simple 1-dimensional example:
$$f = \int_0^\infty \frac{\mathrm{d}k \, k^{-\varepsilon}}{(k+m)(k+q)}, \quad m \ll q$$

soft (s): $k \sim m, \quad k < \Lambda$
hard (h): $k \sim q, \quad k > \Lambda$ $\bigg\}$ where $m \ll \Lambda \ll q$

$$\begin{split} f &= \int_0^\Lambda \frac{\mathrm{d}k \, k^{-\varepsilon}}{(k+m)(k+q)} + \int_\Lambda^\infty \frac{\mathrm{d}k \, k^{-\varepsilon}}{(k+m)(k+q)} \\ &= \sum_{j=0}^\infty \frac{(-1)^j}{q^{j+1}} \int_0^\Lambda \frac{\mathrm{d}k \, k^{-\varepsilon+j}}{k+m} + \sum_{i=0}^\infty (-m)^i \int_\Lambda^\infty \frac{\mathrm{d}k \, k^{-\varepsilon-i-1}}{k+q} \\ &= \sum_{j=0}^\infty \frac{(-1)^j}{q^{j+1}} \left(\int_0^\infty \frac{\mathrm{d}k \, k^{-\varepsilon+j}}{k+m} - \int_\Lambda^\infty \frac{\mathrm{d}k \, k^{-\varepsilon+j}}{k+m} \right) + \sum_{i=0}^\infty (-m)^i \left(\int_0^\infty \frac{\mathrm{d}k \, k^{-\varepsilon-i-1}}{k+q} - \int_0^\Lambda \frac{\mathrm{d}k \, k^{-\varepsilon-i-1}}{k+q} \right) \\ &= \underbrace{\sum_{j=0}^\infty \frac{(-1)^j}{q^{j+1}} \int_0^\infty \frac{\mathrm{d}k \, k^{-\varepsilon+j}}{k+m}}_{f^{(s)}} + \underbrace{\sum_{i=0}^\infty (-m)^i \int_0^\infty \frac{\mathrm{d}k \, k^{-\varepsilon-i-1}}{k+q}}_{f^{(h)}} - \sum_{i=0}^\infty (-m)^i \sum_{j=0}^\infty \frac{(-1)^j}{q^{j+1}} \underbrace{\int_0^\infty \mathrm{d}k \, k^{-\varepsilon-i+j-1}}_{\to 0, \text{ scaleless integral}} \end{split}$$

$$= f^{(s)} + f^{(h)} = \frac{\Gamma(\varepsilon)\Gamma(1-\varepsilon)}{m^{\varepsilon} q} \sum_{j=0}^{\infty} \left(\frac{m}{q}\right)^{j} + \frac{\Gamma(-\varepsilon)\Gamma(1+\varepsilon)}{q^{1+\varepsilon}} \sum_{i=0}^{\infty} \left(\frac{m}{q}\right)^{i}$$
$$= \frac{\Gamma(\varepsilon)\Gamma(1-\varepsilon)}{(q-m)m^{\varepsilon}} + \frac{\Gamma(-\varepsilon)\Gamma(1+\varepsilon)}{(q-m)q^{\varepsilon}} = \frac{\ln(q/m)}{q-m} + \mathcal{O}(\varepsilon) \quad \checkmark$$

Parameterization of Feynman integrals

• Schwinger parameters:

$$\frac{1}{A^n} = \frac{1}{i^n \, \Gamma(n)} \int_0^\infty \mathrm{d}\alpha \, \alpha^{n-1} \, e^{i\alpha A} \,, \quad \text{numerator} \; A^n = \left. \left(\frac{1}{i} \frac{\partial}{\partial \alpha} \right)^n e^{i\alpha A} \right|_{\alpha = 0}$$

 \Rightarrow any number of propagators and numerators may be combined

 \Rightarrow can always be transformed to (generalized) Feynman parameters \hookrightarrow evaluation:

$$\int d^d k \, e^{i(\alpha k^2 + 2p \cdot k)} = i\pi^{d/2} \, (i\alpha)^{-d/2} \, e^{-ip^2/\alpha}$$
$$\int_0^\infty \frac{d\alpha \, \alpha^{n-1}}{(A+\alpha B)^r} = \frac{\Gamma(n) \, \Gamma(r-n)}{\Gamma(r) \, A^{r-n} \, B^n}$$

• generalized Feynman parameters:

$$\prod_{i=1}^{L} \frac{1}{A_i^{n_i}} = \frac{\Gamma(\sum_i n_i)}{\prod_i \Gamma(n_i)} \left(\prod_i \int_0^\infty \mathrm{d}x_i \, x_i^{n_i - 1} \right) \frac{\delta\left(\sum_{j \in S} x_j - 1\right)}{(\sum_i x_i A_i)^{\sum_i n_i}}, \quad \emptyset \neq S \subseteq \{1, \dots, L\}$$

 \Rightarrow convenient also for non-standard propagators, e.g. $A_i = 2p \cdot k$

Mellin–Barnes representation

Feynman integrals with many parameters are hard to evaluate → separate parameters by Mellin–Barnes representation:

$$\frac{1}{(A+B)^n} = \frac{1}{\Gamma(n)} \int_{-i\infty}^{i\infty} \frac{\mathrm{d}z}{2\pi i} \,\Gamma(-z)\,\Gamma(n+z)\,\frac{B^z}{A^{n+z}}$$

- Mellin–Barnes integrals go along the imaginary axis, leaving poles of $\Gamma(-z + ...)$ to the right and poles of $\Gamma(z + ...)$ to the left of the integration contour
- applicable to massive propagators $(A = k^2, B = -M^2)$ or to any complicated parameter integral
- evaluation: close the integration contour to the right $(|B| \le |A|)$ or to the left $(|B| \ge |A|)$ and pick up the residues within the contour: $\operatorname{Res} \Gamma(z)|_{z=-i} = (-1)^i/i!$
- applicable for asymptotic expansions: sum of residues yields expansion in powers of (B/A) or (A/B) and $\ln(A/B)$
- close link to *expansion by regions*:
 Mellin–Barnes representation of the full integral → sum of residues
 → asymptotic expansion with contributions corresponding to the regions

Mellin–Barnes integrals: extraction of singularities

$$I = \int_{-i\infty}^{i\infty} \frac{\mathrm{d}z}{2\pi i} \underbrace{\frac{\Gamma(\alpha - z)}{\operatorname{right poles}}}_{\text{right poles}} \underbrace{\frac{\Gamma(-\alpha + \varepsilon + z)}{\operatorname{left poles}}}_{\text{left poles}} f(z)$$

 \Rightarrow The right pole at $z = \alpha$ and the left pole at $z = \alpha - \varepsilon$ "glue together" for $\varepsilon \to 0$. Close contour to the right:

$$-\operatorname{Res} \Gamma(\alpha - z) \Gamma(-\alpha + \varepsilon + z) f(z) \Big|_{z=\alpha} = \Gamma(\varepsilon) f(\alpha) = \frac{1}{\varepsilon} f(\alpha) + \mathcal{O}(\varepsilon^0)$$

 \Rightarrow When a left pole and a right pole glue together, a singularity is produced!

Extraction of such singularities:

$$I = -\operatorname{Res} \Gamma(\alpha - z) \Gamma(-\alpha + \varepsilon + z) f(z) \Big|_{z=\alpha} + \int_{-i\infty}^{i\infty} \frac{\mathrm{d}z}{2\pi i} \underbrace{\frac{\Gamma(1 + \alpha - z)}{\operatorname{right poles}}}_{\operatorname{right poles}} \underbrace{\frac{\Gamma(-\alpha + \varepsilon + z)}{\alpha - z}}_{\operatorname{left poles}} f(z)$$

Now the poles at $z = \alpha$ and $z = \alpha - \varepsilon$ both lie to the left of the integration contour. \hookrightarrow The integrand can safely be expanded in ε .

Example: the non-planar vertex diagram

Scalar integrals with variable powers of propagators:

Example: the non-planar vertex diagram
Scalar integrals with variable powers of propagators:

$$F_{NP}(n_{1},...,n_{7}) = e^{2\varepsilon\gamma} (M^{2})^{2\varepsilon} (Q^{2})^{n-n_{7}-4}$$

$$\times \int \frac{d^{d}k}{i\pi^{d/2}} \int \frac{d^{d}\ell}{(\pi^{d/2}} \frac{(2k \cdot \ell)^{n_{7}}}{((p_{1}-k-\ell)^{2})^{n_{1}} ((p_{2}-k-\ell)^{2})^{n_{2}}}$$

$$\times \frac{1}{(k^{2}-2p_{1} \cdot k)^{n_{3}} (\ell^{2}-2p_{2} \cdot \ell)^{n_{4}} (k^{2}-M^{2})^{n_{5}} (\ell^{2}-M^{2})^{n_{6}}}, \quad n = n_{123456}$$

Contributing regions: (h-h),
$$(1c-h)$$
, $(1c-1c)$, $(1c-2c)$, $(1c-1c')$, $(us'-us')$, $(1c-us')$, $(us'-2c)$, $(us'-2c)$, $(us'-2c)$.

Leading term of (1c-h) region $\iff k^2 \sim 2p_1 \cdot k \sim M^2$, $2p_2 \cdot k \sim Q^2$, $\ell \sim Q$:

$$F_{\mathsf{NP}}^{(1\mathsf{c}\mathsf{-}\mathsf{h})}(n_1,\ldots,n_7) = e^{2\varepsilon\gamma} (M^2)^{2\varepsilon} (Q^2)^{n-n_7-4} \int \frac{\mathrm{d}^d k}{i\pi^{d/2}} \int \frac{\mathrm{d}^d \ell}{i\pi^{d/2}} \\ \times \frac{((2p_2 \cdot k)(2p_1 \cdot \ell)/Q^2)^{n_7}}{(\ell^2 - 2p_1 \cdot \ell + (2p_2 \cdot k)(2p_1 \cdot \ell)/Q^2)^{n_1} (\ell^2 - 2p_2 \cdot (k+\ell) + (2p_2 \cdot k)(2p_1 \cdot \ell)/Q^2)^{n_2}} \\ \times \frac{1}{(k^2 - 2p_1 \cdot k)^{n_3} (\ell^2 - 2p_2 \cdot \ell)^{n_4} (k^2 - M^2)^{n_5} (\ell^2)^{n_6}} + \mathcal{O}\left(\frac{M^2}{Q^2}\right)$$

Example: (1c-h) region of the non-planar vertex diagram

Introduce Feynman or Schwinger parameters, integrate & transform into

$$F_{\mathsf{NP}}^{(\mathsf{1c-h})}(n_1,\ldots,n_7) = \left(\frac{M^2}{Q^2}\right)^{2-n_{35}+\varepsilon} (-1)^n e^{2\varepsilon\gamma} \frac{\Gamma(\frac{d}{2}-n_{24})\Gamma(\frac{d}{2}-n_{16}+n_7)\Gamma(n_{35}-\frac{d}{2})}{\Gamma(d-n_{1246}+n_7)\prod_{i=1}^6\Gamma(n_i)}$$

$$\times \int_0^1 dx_1 dx_2 dx_3 x_1^{n_1-1}(1-x_1)^{n_6-1} x_2^{n_2-1}(1-x_2)^{n_4-1} x_3^{n_37-1}(1-x_3)^{\frac{d}{2}-n_3-1}$$

$$\times \underbrace{\Gamma(n_{1246}-\frac{d}{2})\left[x_1(1-x_3)+x_2x_3\right]^{\frac{d}{2}-n_{1246}}}_{\mathsf{Mellin-Barnes representation:}}$$

$$\int_{-i\infty}^{i\infty} \frac{dz}{2\pi i} \Gamma(-z)\Gamma(n_{1246}-\frac{d}{2}+z) \left(x_1(1-x_3)\right)^z \left(x_2x_3\right)^{\frac{d}{2}-n_{1246}-z}$$

 \Rightarrow Expression with Mellin–Barnes integral:

$$F_{\rm NP}^{(\rm 1c-h)}(n_1,\ldots,n_7) = \left(\frac{M^2}{Q^2}\right)^{2-n_{35}+\varepsilon} (-1)^n \frac{e^{2\varepsilon\gamma} \Gamma(\frac{d}{2}-n_{24})\Gamma(\frac{d}{2}-n_{16}+n_7)\Gamma(n_{35}-\frac{d}{2})}{\Gamma(n_1)\Gamma(n_2)\Gamma(n_3)\Gamma(n_5)\Gamma(d-n_{1246}+n_7)^2} \\ \times \int_{-i\infty}^{i\infty} \frac{dz}{2\pi i} \frac{\Gamma(-z)\Gamma(\frac{d}{2}-n_{146}-z)\Gamma(\frac{d}{2}-n_{1246}+n_{37}-z)}{\Gamma(\frac{d}{2}-n_{16}-z)} \\ \times \frac{\Gamma(n_1+z)\Gamma(\frac{d}{2}-n_3+z)\Gamma(n_{1246}-\frac{d}{2}+z)}{\Gamma(n_{16}+z)}$$

Example: evaluation of the (1c-h) region for special cases (1)

$$\begin{split} F_{\mathsf{NP}}^{(\mathsf{1c-h})}(1,1,1,0,1,0,0) &= \left(\frac{M^2}{Q^2}\right)^{\varepsilon} e^{2\varepsilon\gamma} \, \frac{\Gamma(1-\varepsilon)^2 \Gamma(\varepsilon)}{\Gamma(2-2\varepsilon)^2} \\ &\times \int_{-i\infty}^{i\infty} \frac{\mathrm{d}z}{2\pi i} \, \Gamma(-z) \Gamma(1-\varepsilon-z) \, \Gamma(1-\varepsilon+z) \Gamma(\varepsilon+z) \end{split}$$

Solution known: 1st Barnes lemma

Barnes 1908

$$\int_{-i\infty}^{i\infty} \frac{\mathrm{d}z}{2\pi i} \,\Gamma(\alpha_1 - z) \Gamma(\alpha_2 - z) \,\Gamma(\alpha_3 + z) \Gamma(\alpha_4 + z) = \frac{\Gamma(\alpha_1 + \alpha_3) \Gamma(\alpha_1 + \alpha_4) \Gamma(\alpha_2 + \alpha_3) \Gamma(\alpha_2 + \alpha_4)}{\Gamma(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)}$$

$$\Rightarrow F_{\mathsf{NP}}^{(\mathsf{1c-h})}(1,1,1,0,1,0,0) = \left(\frac{M^2}{Q^2}\right)^{\varepsilon} e^{2\varepsilon\gamma} \frac{\Gamma(1-\varepsilon)^2 \Gamma(\varepsilon)}{\Gamma(2-2\varepsilon)^2} \frac{\Gamma(1-\varepsilon)\Gamma(\varepsilon)\Gamma(2-2\varepsilon)}{\Gamma(2-\varepsilon)} \\ = \frac{1}{\varepsilon^2} + \frac{1}{\varepsilon} \left(-\mathcal{L}+3\right) + \frac{1}{2}\mathcal{L}^2 - 3\mathcal{L} + 7 + \mathcal{O}(\varepsilon) \,, \quad \mathcal{L} = \ln\left(\frac{Q^2}{M^2}\right)$$

Example: evaluation of the (1c-h) region for special cases (2)

$$\begin{split} F_{\mathsf{NP}}^{(\mathsf{1c-h})}(1,1,1,0,1,1,0) &= -\left(\frac{M^2}{Q^2}\right)^{\varepsilon} e^{2\varepsilon\gamma} \, \frac{\Gamma(1-\varepsilon)\Gamma(-\varepsilon)\Gamma(\varepsilon)}{\Gamma(1-2\varepsilon)^2} \\ &\times \int_{-i\infty}^{i\infty} \frac{\mathrm{d}z}{2\pi i} \, \Gamma(-z)\Gamma(-\varepsilon-z) \, \frac{\Gamma(1+z)\Gamma(1-\varepsilon+z)\Gamma(1+\varepsilon+z)}{\Gamma(2+z)} \end{split}$$

• 1st possibility: expand integrand in ε

 \hookrightarrow transform to expressions solvable by Barnes lemma etc.

• 2nd possibility: close integration contour to the right and take residues directly:

$$\left(\frac{M^2}{Q^2}\right)^{\varepsilon} e^{2\varepsilon\gamma} \frac{\Gamma(1-\varepsilon)^3 \Gamma(1+\varepsilon)^2}{\varepsilon^3 \, \Gamma(1-2\varepsilon)^2} \sum_{i=0}^{\infty} \left[\underbrace{\frac{\Gamma(1-2\varepsilon+i)}{\Gamma(2-\varepsilon+i)}}_{\text{from } z=-\varepsilon+i} - \underbrace{\frac{\Gamma(1-\varepsilon+i)}{\Gamma(2+i)}}_{\text{from } z=i} \right]$$

expand Gamma functions \rightarrow sum up to (multiple) zeta values:

$$F_{\rm NP}^{\rm (1c-h)}(1,1,1,0,1,1,0) = \frac{\pi^2}{6\varepsilon^2} + \frac{1}{\varepsilon} \left(-\frac{\pi^2}{6}\mathcal{L} + 2\zeta_3 \right) + \frac{\pi^2}{12}\mathcal{L}^2 - 2\zeta_3\mathcal{L} + \frac{\pi^4}{40} + \mathcal{O}(\varepsilon)$$

Example: evaluation of the (1c-h) region for special cases (3)

$$\begin{split} F_{\mathsf{NP}}^{(\mathsf{lc}\mathsf{-h})}(1,\delta,1,1,1,1,0) &= -\left(\frac{M^2}{Q^2}\right)^{\varepsilon} (-1)^{\delta} e^{2\varepsilon\gamma} \frac{\Gamma(1-\varepsilon-\delta)\Gamma(-\varepsilon)\Gamma(\varepsilon)}{\Gamma(\delta)\Gamma(1-2\varepsilon-\delta)^2} \\ &\times \int_{-i\infty}^{i\infty} \frac{\mathrm{d}z}{2\pi i} \frac{\Gamma(-z)\Gamma(-1-\varepsilon-z)\Gamma(-\varepsilon-\delta-z)}{\Gamma(-\varepsilon-z)} \frac{\Gamma(1+z)\Gamma(1-\varepsilon+z)\Gamma(1+\varepsilon+\delta+z)}{\Gamma(2+z)} \\ &\text{imit } \delta \to 0 \Rightarrow \frac{1}{\Gamma(\delta)} \to 0, \text{ but gluing poles at } z = -1-\varepsilon \text{ and } z = -1-\varepsilon - \delta: \\ F_{\mathsf{NP}}^{(\mathsf{lc}\mathsf{-h})}(1,0,1,1,1,1,0) &= \lim_{\delta \to 0} \left(\frac{M^2}{Q^2}\right)^{\varepsilon} (-1)^{\delta} e^{2\varepsilon\gamma} \frac{\Gamma(1-\varepsilon-\delta)\Gamma(-\varepsilon)\Gamma(\varepsilon)}{\Gamma(\delta)\Gamma(1-2\varepsilon-\delta)^2} \\ &\times \operatorname{Res} \left. \frac{\Gamma(-z)\Gamma(-1-\varepsilon-z)\Gamma(-\varepsilon-\delta-z)}{\Gamma(-\varepsilon-z)} \frac{\Gamma(1+z)\Gamma(1-\varepsilon+z)\Gamma(1+\varepsilon+\delta+z)}{\Gamma(2+z)} \right|_{z=-1-\varepsilon} \\ &= -\left(\frac{M^2}{Q^2}\right)^{\varepsilon} e^{2\varepsilon\gamma} \frac{\Gamma(1-\varepsilon)\Gamma(-\varepsilon)\Gamma(\varepsilon)}{\Gamma(1-2\varepsilon)^2} \frac{\Gamma(1+\varepsilon)\Gamma(-\varepsilon)\Gamma(-2\varepsilon)}{\Gamma(1-\varepsilon)} \\ &= \frac{1}{2\varepsilon^4} - \frac{1}{2\varepsilon^3}\mathcal{L} + \frac{1}{4\varepsilon^2}\mathcal{L}^2 - \frac{1}{\varepsilon} \left(\frac{1}{12}\mathcal{L}^3 + \frac{4}{3}\zeta_3\right) + \frac{1}{48}\mathcal{L}^4 + \frac{4}{3}\zeta_3\mathcal{L} - \frac{\pi^4}{60} + \mathcal{O}(\varepsilon) \end{split}$$

Four-fermion scattering

- calculation in the high energy limit reduced to the SU(2) form factor
- 2-loop form factor calculated including all large logarithms
- electroweak 2-loop corrections obtained in N³LL approximation

Evaluating Feynman diagrams in the high energy limit

- expansion by regions
- Mellin–Barnes representation
- \hookrightarrow effective combination of advanced methods

Outlook: more legs & more scales

apply methods for Feynman diagrams with

- more than 3 external legs \rightarrow depend on all $p_i \cdot p_j$
- different heavy masses M_W , M_Z , $M_{{
 m Higgs}}$, m_t , \ldots
- \Rightarrow successful extraction of LL and NLL contribution from Mellin–Barnes integrals \checkmark