
PSI Particle Theory Seminar March 13, 2008

Sudakov Logarithms for Neutral-Current Drell-Yan Processes at the LHC

Bernd Jantzen

Paul Scherrer Institut (PSI), CH-Villigen

Overview

I Drell—Yan processes at the LHC

- precision physics with Drell–Yan processes
- physics motivations
- status of loop calculations & tools for neutral-current processes
- Les Houches 2005/2007 & TeV4LHC

II Electroweak Sudakov logarithms

- large logarithms in electroweak corrections
- one- & two-loop effects
- existing Sudakov results at two loops

III Four-fermion scattering: two-loop calculation

- factorization into QED contributions, form factor & reduced amplitude
- SU(2) form factor: calculation & results
- electroweak results

IV Implementation of Sudakov corrections for LHC

- running couplings & input parameter schemes
- partonic cross sections
- hadronic distributions

V Summary

Overview

I Drell-Yan processes at the LHC

- precision physics with Drell-Yan processes
- physics motivations
- status of loop calculations & tools for neutral-current processes
- Les Houches 2005/2007 & TeV4LHC

II Electroweak Sudakov logarithms

- large logarithms in electroweak corrections
- one- & two-loop effects
- existing Sudakov results at two loops

III Four-fermion scattering: two-loop calculation

- factorization into QED contributions, form factor & reduced amplitude
- SU(2) form factor: calculation & results
- electroweak results

IV Implementation of Sudakov corrections for LHC

- running couplings & input parameter schemes
- partonic cross sections
- hadronic distributions

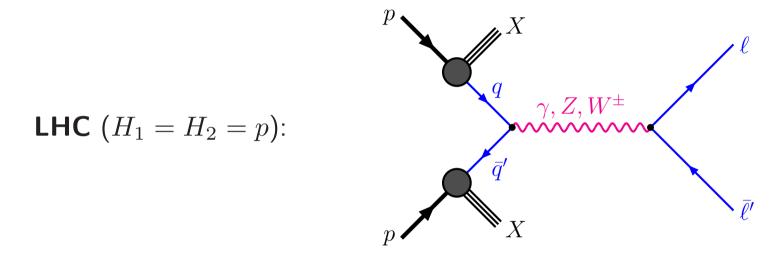
V Summary

I Drell-Yan processes at the LHC

Precision collider physics

Precision measurements and electroweak (EW) + QCD corrections for observables at LEP, SLC and Tevatron enabled us to

- probe Standard Model (SM) of EW & strong interactions as a quantum field theory,
- test SM consistency by comparing direct with indirect measurements of model parameters $(m_t, M_W, \sin^2 \theta_{\text{eff}}, \ldots)$,
- constrain SM Higgs boson mass,
- search for small deviations from SM predictions \Rightarrow indirect signals of new physics
- exclude or constrain new physics models.
- ⇒ Continue precision physics at LHC (and ILC/CLIC):
- possibly discover Higgs and/or new physics particles
- measure new particles' masses, couplings, spin
- test consistency, search for deviations, constrain model parameters, . . .


Theoretical input needed for precision physics

- precise predictions for signal and background processes (SM and beyond)
- include all relevant higher-order corrections
- partonic and hadronic processes → PDF's, fragmentation
- estimate of theoretical uncertainties
- total cross sections and kinematic distributions with experimental/realistic cuts
- implementation in event generators

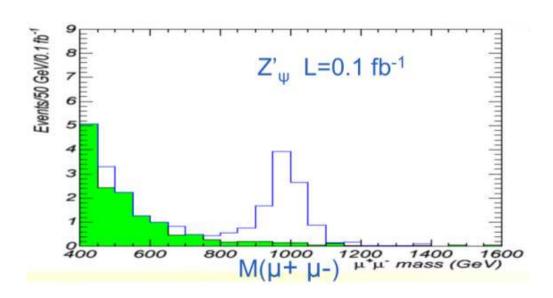
Drell-Yan (DY) processes

 \hookrightarrow production of a lepton-antilepton pair with high invariant mass $M_{\ell\ell}$ (or high p_T^ℓ 's) in a hadron-hadron collision: $H_1\,H_2 \to \ell\, \bar\ell' + X \; (H_{1,2}=p,\bar p)$ Drell, Yan '70, '71

Partonic reaction

- neutral-current DY: $q \bar{q} \rightarrow \gamma/Z \rightarrow \ell^- \ell^+$
- charged-current DY: $q \bar{q}' \to W^{\pm} \to \ell^{\pm} \nu/\bar{\nu}$

Factorization


$$\sigma_{\text{tot}} = \sum_{i,j} \int_0^1 dx_1 dx_2 \, f_i^{H_1}(x_1, \mu^2) \, f_j^{H_2}(x_2, \mu^2) \int d\sigma \Big(q_i(x_1 p_1) + \bar{q}_j(x_2 p_2) \to \ell + \bar{\ell}', \mu^2 \Big)$$

Physics motivations

Why consider Drell-Yan at LHC?

- easy detection: high- p_T lepton pair or lepton + missing p_T (typically $p_T > 20 \, \text{GeV}$ in central detector region)
- large cross sections: $\sigma(p\,p\to e^-e^+,\,\mu^-\mu^+)\sim 1.8\,\mathrm{nb},\,\sigma(p\,p\to e\,\nu_e,\,\mu\,\nu_\mu)\sim 17\,\mathrm{nb}$ $\hookrightarrow \mathcal{O}(10^8,10^9)$ events for $\mathcal{L}=100\,\mathrm{fb}^{-1}$
- ullet detector calibration and luminosity monitoring (\sim Bhabha at LEP)
- validating and constraining PDF's
- ullet precision measurement of $M_{W,Z}$ and $\Gamma_{W,Z}$ at the W,Z peak
- background to new physics searches at high $M_{\ell\ell}$ \Longrightarrow
 - → need precise theoretical prediction
 for high-energy tail

Status of loop calculations & tools for neutral-current processes

QCD

• total cross sections up to $\mathcal{O}(\alpha_s^2)$ and resummation (RESBOS)

Altarelli et al. '84; Hamberg et al. '91; van Neerven et al. '92; Giele et al. '93; Balazs et al. '97

• fully differential distributions up to $\mathcal{O}(\alpha_s^2)$ (MCFM, FEWZ)

Campbell et al. '02; Anastasiou et al. '04; Dixon et al. '03; Melnikov et al. '06

• merged/matched with parton shower (HERWIG, MC@NLO, ALPGEN, SHERPA, ...)

Frixione et al. '02; Mangano et al. '03; Kraus et al. '05

Electroweak

• complete EW $\mathcal{O}(\alpha)$ corrections

(ZGRAD2, HORACE, SANC)

Baur et al. '02; Carloni Calame et al. '07; Bardin et al. '07

multi-photon radiation

(HORACE, ZINHAC)

Carloni Calame et al. '05, '07; Płaczek et al.

⇒ Need combined tools for QCD & EW!

Strong enhancement by EW Sudakov logs at high energies

⇒ might need dominant EW 2-loop corrections

Les Houches 2005 Workshop "Physics at TeV Colliders"

hep-ph/0604120

& Tevatron-for-LHC (TeV4LHC)

arXiv:0705.3251 [hep-ph]

Electroweak Working Groups

Tuned comparison of available Monte Carlo (MC) programs for charged-current DY:

- common setup for comparison: cuts $(p_T^{\ell} > 20 \, \text{GeV}, \, |\eta_{\ell}| < 2.5)$, input parameter scheme, which distributions, ...
- estimate remaining theoretical uncertainties
 (missing higher-order corrections, PDF uncertainties, . . .)
- identify necessary improvements to match experimental precision

Les Houches 2007

arXiv:0803.0678 [hep-ph]

Ongoing comparisons for neutral-current DY

Mini-Workshop "Physics with LHC early data"

in Glasgow, November 26–30, 2007

http://ppewww.physics.gla.ac.uk/~samir/MiniWorkshop

- continue comparison for neutral-current DY (QCD & EW)
- implement 2-loop EW Sudakov logs in MC programs

Overview

I Drell—Yan processes at the LHC

- precision physics with Drell–Yan processes
- physics motivations
- status of loop calculations & tools for neutral-current processes
- Les Houches 2005/2007 & TeV4LHC

II Electroweak Sudakov logarithms

- large logarithms in electroweak corrections
- one- & two-loop effects
- existing Sudakov results at two loops

III Four-fermion scattering: two-loop calculation

- factorization into QED contributions, form factor & reduced amplitude
- SU(2) form factor: calculation & results
- electroweak results

IV Implementation of Sudakov corrections for LHC

- running couplings & input parameter schemes
- partonic cross sections
- hadronic distributions

V Summary

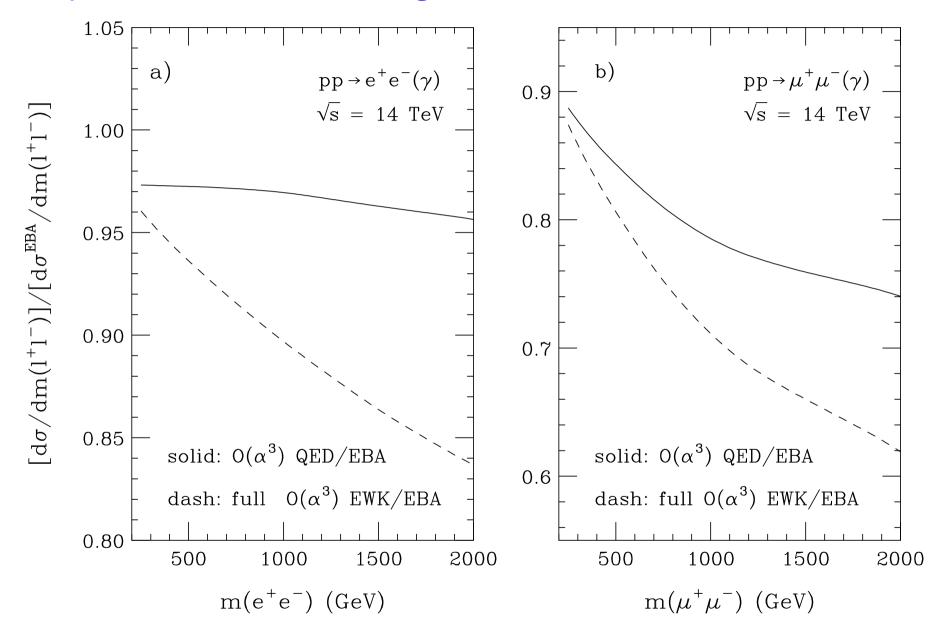
II Electroweak Sudakov logarithms

Large logarithms in electroweak corrections

EW corrections at high energies $\sqrt{s} \sim \text{TeV} \gg M_{W,Z}$

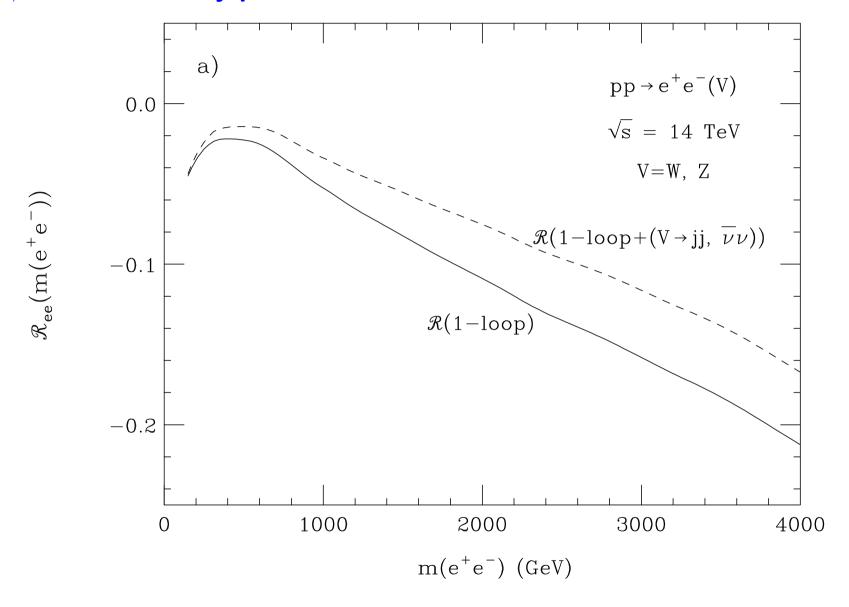
- dominated by Sudakov logarithms $\alpha^n \ln^j(s/M_W^2)$, j=2n,
- subleading logs $(0 \le j < 2n)$ also important (cancellations!)

Origin of large logs

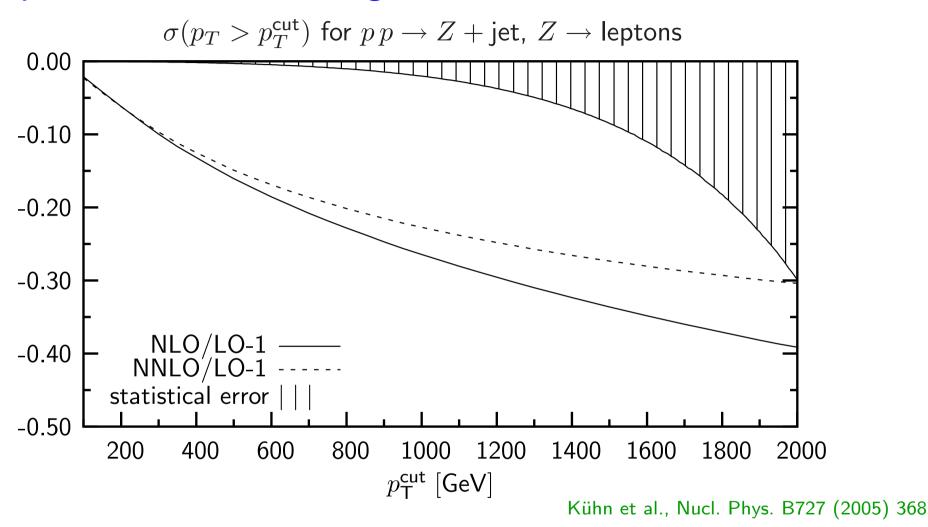

- mass singularities: emission of soft/collinear gauge bosons from external particles
- remnants from UV singularities: $\ln(s/\mu^2)$

Massless gauge bosons: real emission of soft/collinear photons/gluons cannot be detected ⇒ mass singularities cancel (KLN theorem)

Massive gauge bosons: real emission of W's, Z's can be detected separately


One-loop effects of EW Sudakov logarithms

Baur et al., PRD65 (2002) 033007


Real W, Z emission: only partial cancellation

Baur, Phys. Rev. D75 (2007) 013005

Two-loop effects of EW Sudakov logarithms

Size of corrections at $p_T^{\text{cut}} \sim 1 \text{ TeV}$ vs. statistical error $\sigma_{\text{stat}} \simeq 2\%$ ($\mathcal{L} = 300 \, \text{fb}^{-1}$):

- 1-loop: $-26\% \simeq -13 \, \sigma_{\rm stat}$
- dominant 2-loop terms: $+4\% \simeq +2 \, \sigma_{\rm stat}$

Existing Sudakov results at two loops

Universal structure of mass singularities \Rightarrow use **evolution equations** valid for unbroken SU(2)×U(1) $(M_{\gamma} = M_Z = M_W)$ and for pure QED:

$$\alpha^2 \left[\underbrace{C_{\mathsf{LL}} \ln^4 \left(\frac{s}{M_W^2} \right)}_{\mathsf{Fadin, \ Lipatov, \ Martin, \ Melles \ '99}} + \underbrace{C_{\mathsf{NLL}} \ln^3 \left(\frac{s}{M_W^2} \right)}_{\mathsf{Melles \ '00, \ '01}} + \underbrace{C_{\mathsf{NNLL}} \ln^2 \left(\frac{s}{M_W^2} \right)}_{\mathsf{K\"uhn, \ Moch, \ Penin, \ Smirnov \ '99-'01}} + \underbrace{C_{\mathsf{N^3}}_{\mathsf{LL}} \ln \left(\frac{s}{M_W^2} \right)}_{\mathsf{Smirnov \ '03-'05}} \right]_{\mathsf{Smirnov \ '99-'01}}$$

Recently: $e^-e^+ o W^+W^-$ [Kühn, Metzler, Penin '07], SCET approach [Chiu, Golf, Kelley, Manohar '07]

Explicit 2-loop calculations based on EW Lagrangian:

$$\alpha^{2} \left[\underbrace{C_{\mathsf{LL}} \ln^{4} \left(\frac{s}{M_{W}^{2}} \right)}_{\mathsf{Melles '00;}} + \underbrace{C_{\mathsf{NLL}}^{\mathsf{ang}} \ln \left(\frac{t}{s} \right) \ln^{3} \left(\frac{s}{M_{W}^{2}} \right)}_{\mathsf{Denner, Melles, Pozzorini '03}} + \underbrace{C_{\mathsf{NLL}}^{\mathsf{rem}} \ln^{3} \left(\frac{s}{M_{W}^{2}} \right)}_{\mathsf{Pozzorini '04;}} \right]_{\mathsf{Denner, Melles, Pozzorini '03}} + \underbrace{C_{\mathsf{NLL}}^{\mathsf{rem}} \ln^{3} \left(\frac{s}{M_{W}^{2}} \right)}_{\mathsf{Pozzorini '06(-'08)}} \right]_{\mathsf{Denner, Melles, Pozzorini '03}}$$

arbitrary processes

⇒ agree with evolution equations

Overview

I Drell-Yan processes at the LHC

- precision physics with Drell-Yan processes
- physics motivations
- status of loop calculations & tools for neutral-current processes
- Les Houches 2005/2007 & TeV4LHC

II Electroweak Sudakov logarithms

- large logarithms in electroweak corrections
- one- & two-loop effects
- existing Sudakov results at two loops

III Four-fermion scattering: two-loop calculation

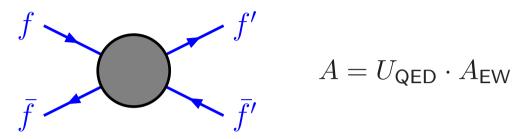
- factorization into QED contributions, form factor & reduced amplitude
- SU(2) form factor: calculation & results
- electroweak results


IV Implementation of Sudakov corrections for LHC

- running couplings & input parameter schemes
- partonic cross sections
- hadronic distributions

V Summary

III Four-fermion scattering: two-loop calculation



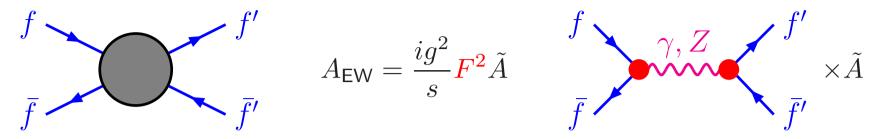
- J.H. Kühn, A.A. Penin, hep-ph/9906545
- J.H. Kühn, A.A. Penin, V.A. Smirnov, Eur. Phys. J. C 17 (2000) 97
- J.H. Kühn, S. Moch, A.A. Penin, V.A. Smirnov, Nucl. Phys. B 616 (2001) 286
- B. Feucht (Jantzen), J.H. Kühn, S. Moch, Phys. Lett. B 561 (2003) 111
- B. Feucht (Jantzen), J.H. Kühn, A.A. Penin, V.A. Smirnov, Phys. Rev. Lett. 93 (2004) 101802
- B. Jantzen, J.H. Kühn, A.A. Penin, V.A. Smirnov, Phys. Rev. D 72 (2005) 051301(R)
- B. Jantzen, J.H. Kühn, A.A. Penin, V.A. Smirnov, Nucl. Phys. B 731 (2005) 188
- B. Jantzen, V.A. Smirnov, Eur. Phys. J. C 47 (2006) 671

Four-fermion scattering: $f\bar{f} \to f'\bar{f}'$, important class of processes (\to Drell-Yan)

Factorization of QED contributions:

- QED factor $U_{\text{QED}} \rightarrow \text{IR}$ singularities from virtual massless photons (regularized dimensionally or by small photon mass, compensated by real corrections)
- amplitude $A_{EW} \rightarrow$ remaining electroweak contributions, IR-safe
- calculate $A_{\rm EW}$ by evaluating $A/U_{\rm QED}$ with $M_{\gamma}=M_W$ \hookrightarrow works at NNLL accuracy \checkmark

Problem at N³LL (2-loop linear log): mixing of gauge groups $SU(2)\times U(1)$ through Higgs mechanism


⇒ use simplified model without mixing:

B.J., Kühn, Penin, Smirnov '04, '05

- factorization of QED contributions works at N³LL accuracy
- ullet single mass parameter: $M=M_W=M_{Z=W^3}=M_{\gamma=B}$
- ullet include mass difference (M_Z-M_W) by expansion around $M_Zpprox M_W$
- ullet remaining error $\sim \mathcal{O}(\sin^2 heta_W) \sim 20\%$ in coefficient of linear 2-loop log

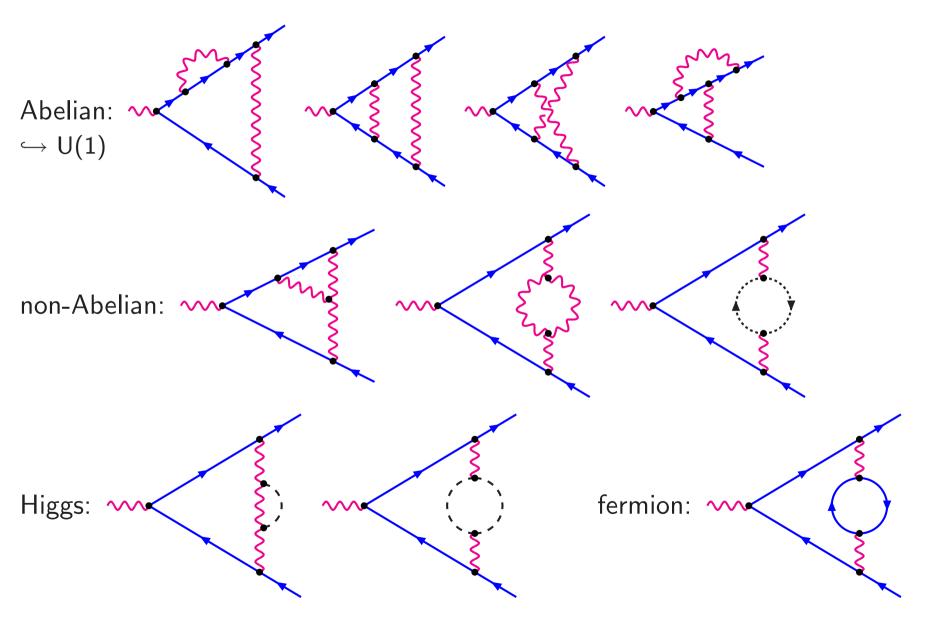
Factorization into form factor and reduced amplitude:

Form factor F of vector current:

$$q \sim \overline{p_2} = F \cdot \overline{u}(p_2) \, \gamma^{\mu} \, u(p_1) + \mathcal{O}(\text{fermion masses})$$

High-energy behaviour $s \sim |t| \sim |u| \gg M_{W,Z}^2$

references: see Kühn et al. '01


- all double logs $\alpha^n \ln^{2n} \leadsto$ form factors F^2
- reduced amplitude $\tilde{A} \to \text{only single logs } \alpha^n \ln^n$
- ullet $ilde{A}$ obtained from 1-loop and massless 2-loop calculations via an evolution equation:

$$\frac{\partial \tilde{A}}{\partial \ln s} = \chi \big(\alpha(s) \big) \, \tilde{A} \,, \quad \chi = \text{matrix of soft anomalous dimensions}$$

 \Rightarrow For full logarithmic (N 3 LL) 2-loop amplitude: need form factor F

SU(2) form factor in two loops: vertex diagrams

+ 1-loop \times 1-loop corrections + renormalization

High-energy behaviour of the form factor

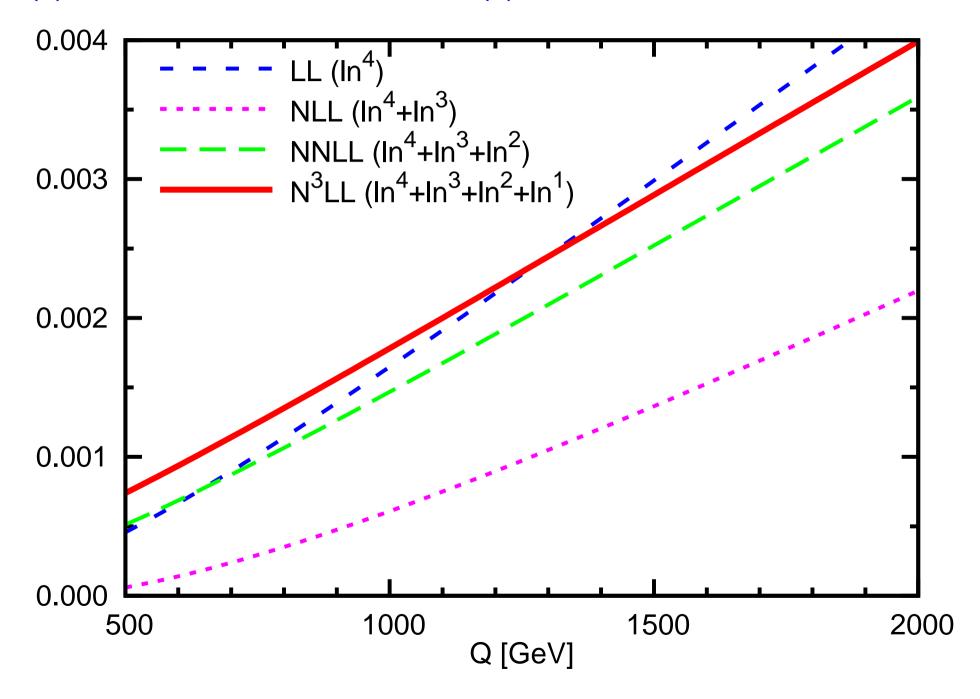
$$q = F(Q^2) \cdot \bar{u}(p_2) \gamma^{\mu} u(p_1)$$

$$p_1$$

- $\begin{array}{l} \bullet \ \ \text{momentum transfer} \ -q^2 \equiv Q^2 \gg M^2 \equiv M_{W,Z}^2 \\ \\ \left[\text{Euclidean} \ Q^2 > 0, \ \text{real} \ F \ \xrightarrow[\text{continuation}]{\text{analytic}} \ \ \text{Minkowskian} \ Q^2 = -s i0 < 0 \right] \\ \end{array}$
- neglect fermion masses \Rightarrow external on-shell fermions: $p_1^2 = p_2^2 = 0$
- ullet logarithmic approximation: neglect terms suppressed by a factor of M^2/Q^2 \hookrightarrow works well for 2-loop n_f contribution where the exact result in M^2/Q^2 is known B.F., Kühn, Moch '03
 - \Rightarrow contains powers of the large $\log \ln(Q^2/M^2)$
 - \Rightarrow leading order of asymptotic expansion in M^2/Q^2
- ullet only 2-loop logs $\ln^{4,3,2,1}$, non-logarithmic constant more difficult
- choose $M_{\rm Higgs} = M_W \Rightarrow$ calculation easier, affects only N³LL, small error
- methods: expansion by regions & Mellin–Barnes representations

SU(2) form factor in two loops: result

B.J., Kühn, Moch '03; B.J., Kühn, Penin, Smirnov '04, '05; B.J., Smirnov '06 $\ln^{4,3,2}$: Kühn, Moch, Penin, Smirnov '01

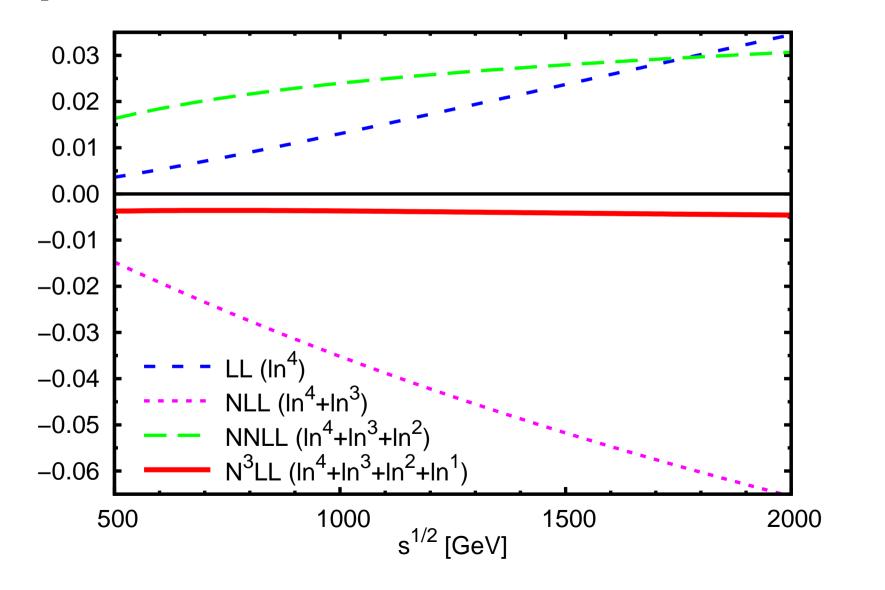

Sizes of logarithmic contributions (at Q = 1 TeV in per mil):

Abelian:
$$+0.3 \ln^4 - 1.7 \ln^3 + 8.2 \ln^2 - 11 \ln + 15$$

 $+1.6$ -2.0 $+1.9$ -0.5 $+0.1$
fermionic: $-1.0 \ln^3 + 9.5 \ln^2 - 26 \ln + 42$
 -1.2 $+2.2$ -1.2 $+0.4$
non-Abelian + Higgs: $+1.8 \ln^3 - 14 \ln^2 + 43 \ln - \dots$
 $+2.1$ -3.2 $+2.0$
total: $+0.3 \ln^4 - 0.9 \ln^3 + 3.7 \ln^2 + 6.9 \ln$

+1.6 -1.0 +0.9 +0.3

SU(2) form factor in two loops: result (2)



Electroweak results: example $\sigma(q \bar{q} \rightarrow e^- e^+)$ (q = d, s)

numerical 2-loop result:

$$\left(\frac{\alpha_{\text{ew}}}{4\pi}\right)^2 \left[+2.79 \ln^4\left(\frac{s}{M_W^2}\right) - 51.98 \ln^3\left(\frac{s}{M_W^2}\right) + 321.34 \ln^2\left(\frac{s}{M_W^2}\right) \right] - 757.35 \ln\left(\frac{s}{M_W^2}\right)$$

Overview

I Drell-Yan processes at the LHC

- precision physics with Drell–Yan processes
- physics motivations
- status of loop calculations & tools for neutral-current processes
- Les Houches 2005/2007 & TeV4LHC

II Electroweak Sudakov logarithms

- large logarithms in electroweak corrections
- one- & two-loop effects
- existing Sudakov results at two loops

III Four-fermion scattering: two-loop calculation

- factorization into QED contributions, form factor & reduced amplitude
- SU(2) form factor: calculation & results
- electroweak results

IV Implementation of Sudakov corrections for LHC

- running couplings & input parameter schemes
- partonic cross sections
- hadronic distributions

V Summary

IV Implementation of Sudakov corrections for LHC

Running couplings & input parameter schemes

Mathematica file with all contributions up to 2 loops

A. Penin

Rewriting Mathematica code with all features needed for implementation:

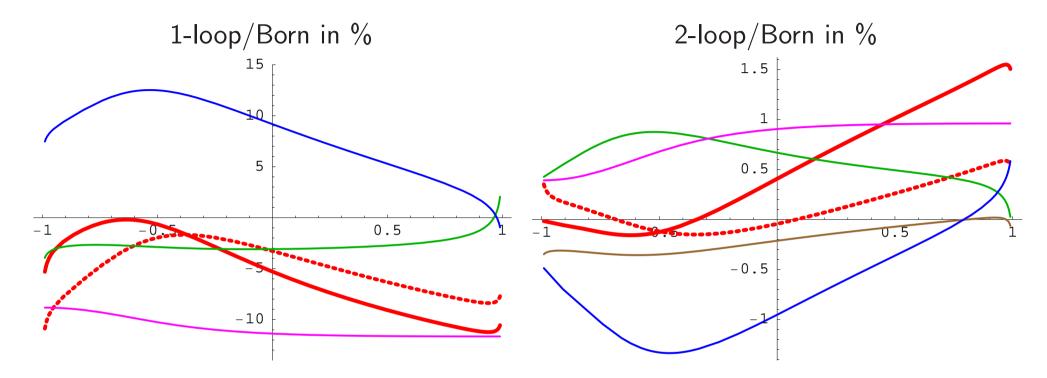
B.J.

- ullet couplings and mixing angles from Born amplitude are renormalized at scale s
 - \hookrightarrow implement 2-loop running $s \to M_W^2$:
 - EW (incl. Yukawa) & optionally QCD contributions

Jones '81; Arason et al. '91

fully differential cross section (unpolarized or polarized)

Fortran code implementing Mathematica results:


S. Pozzorini

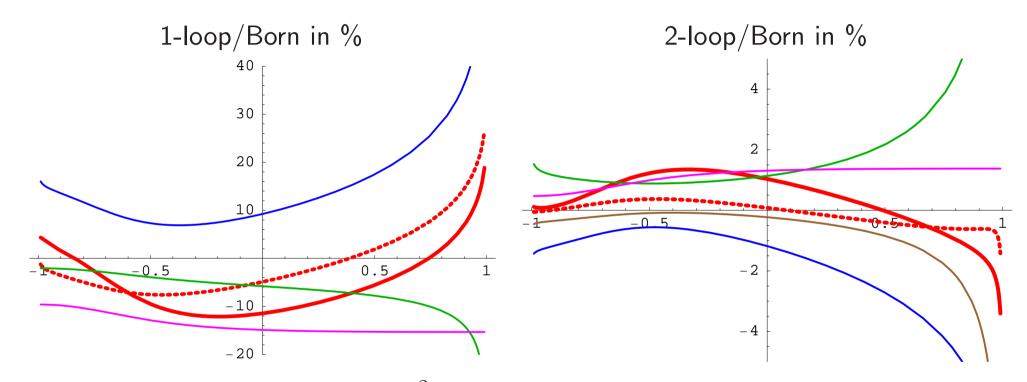
- ullet optional conversion from $\overline{\rm MS}$ to G_{μ} scheme \Rightarrow closer to setup of MC programs
- provides ratios 1-loop/Born & 2-loop/Born
- switches & variables allow flexible settings

Implementation in MC programs ZGRAD2 & HORACE D. Wackeroth, C.M. Carloni Calame

Partonic cross sections: angular dependence for $u\, \bar u o e^-\, e^+$

as a function of $\cos \theta$ for $s = 1 \, \text{TeV}^2$

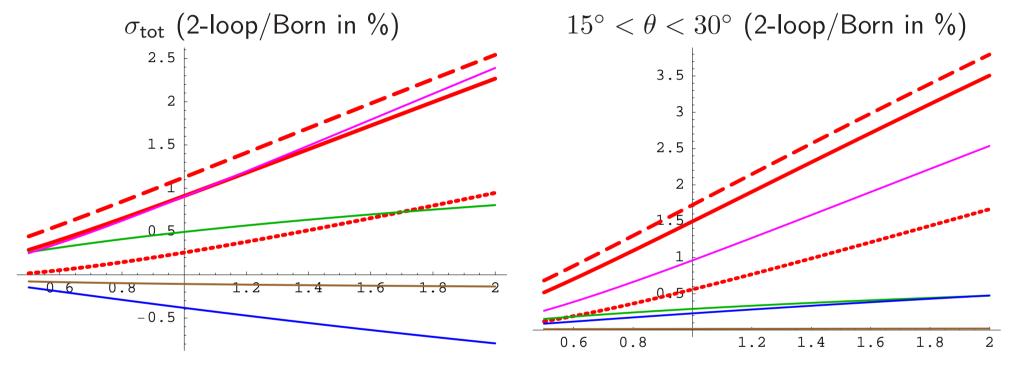
colors: full result; individual logs LL, NLL, NNLL, N³LL


dashed: without running of Born couplings

Strong angular dependence!

(even in LL from normalization with unpolarized cross section)

Partonic cross sections: angular dependence for $d\, \bar d o e^-\, e^+$

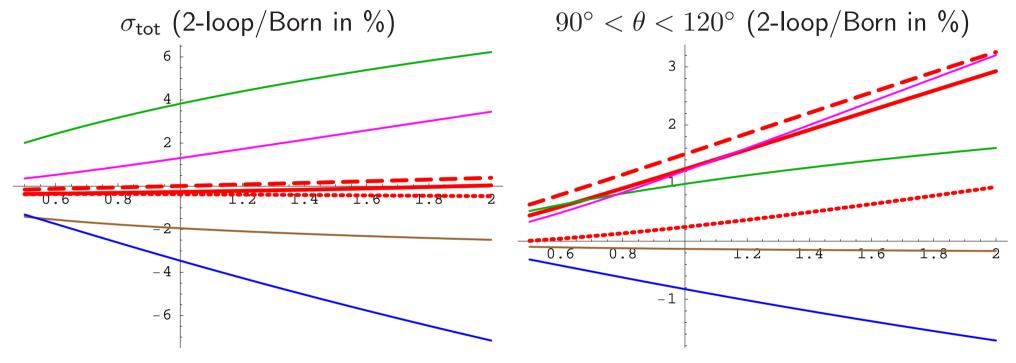

as a function of $\cos\theta$ for $s=1\,\mathrm{TeV}^2$

colors: full result; individual logs LL, NLL, NNLL, N³LL

dashed: without running of Born couplings

Partonic cross sections: $u \, \bar{u} \to e^- \, e^+$

as a function of $\sqrt{s}\,[\mathrm{TeV}]$

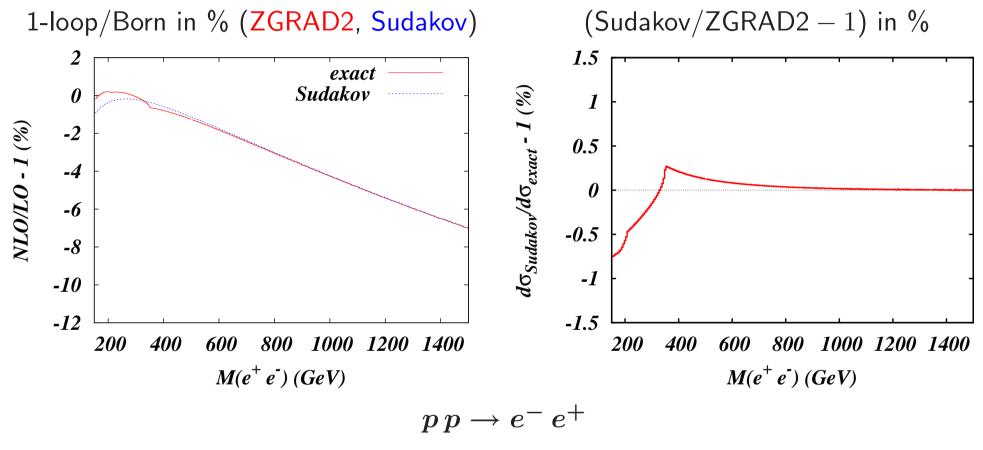

colors: full result; individual logs LL, NLL, NNLL, N³LL

long-dashed: with additional QCD contributions to the running

short-dashed: without running of Born couplings

Partonic cross sections: $d\,\bar{d} ightarrow e^-\,e^+$

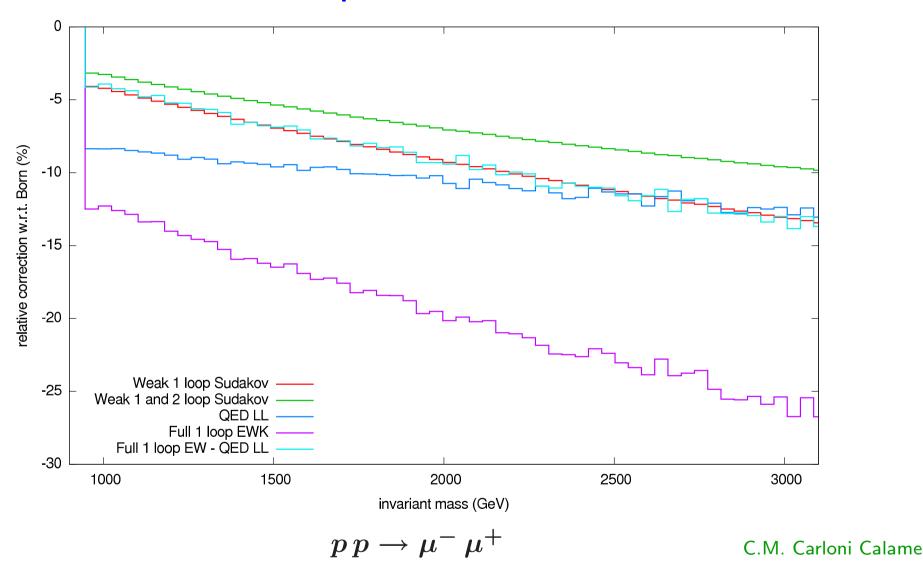
as a function of $\sqrt{s}\,[\mathrm{TeV}]$


colors: full result; individual logs LL, NLL, NNLL, N³LL

long-dashed: with additional QCD contributions to the running

short-dashed: without running of Born couplings

Hadronic distributions: 1-loop comparison of Sudakov corrections with ZGRAD2



D. Wackeroth

 \hookrightarrow Same setup for separation of 1-loop QED contribution from EW corrections

Hadronic distributions: 1- & 2-loop Sudakov corrections with HORACE

- \Rightarrow good 1-loop agreement after subtraction of QED leading logs
- \Rightarrow 2-loop Sudakov corrections of several %

Overview

I Drell-Yan processes at the LHC

- precision physics with Drell–Yan processes
- physics motivations
- status of loop calculations & tools for neutral-current processes
- Les Houches 2005/2007 & TeV4LHC

II Electroweak Sudakov logarithms

- large logarithms in electroweak corrections
- one- & two-loop effects
- existing Sudakov results at two loops

III Four-fermion scattering: two-loop calculation

- factorization into QED contributions, form factor & reduced amplitude
- SU(2) form factor: calculation & results
- electroweak results

IV Implementation of Sudakov corrections for LHC

- running couplings & input parameter schemes
- partonic cross sections
- hadronic distributions

V Summary

V Summary

Drell-Yan processes

- important for precision physics at LHC
- implement best available theoretical predictions into MC program(s)

Electroweak Sudakov logarithms

• large impact at high energies, also 2-loop corrections important

Four-fermion scattering

- 2-loop calculation of amplitude and form factor presented
- large logarithmic contributions, but also large cancellations

Implementation of Sudakov corrections for LHC

- Mathematica & Fortran code → coupling & scheme conversions
- first results for distributions of hadronic cross sections
- good agreement at 1 loop, preliminary 2-loop distributions

Included in Les Houches 2007 Summary Report of the "Standard Model Handles and Candles" Working Group

C. Buttar et al., arXiv:0803.0678 [hep-ph]

⇒ separate publication from Glasgow workshop with more detailed studies will follow